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Problem Description: Goodness-of-Fit Testing

e Let p be a discrete distribution over discrete domain. Given data
Y1:n = {Y1,-..,Yn}t drawn i.i.d. from unknown distribution q,
is there sufficient evidence to reject the hypothesis p = q?

e Many techniques apply to the case of continuous distributions.

e For low-dimensional distributions standard tests: q |~

Pearson chi-square, likelihood-ratio test, Kolmogorov-Smirnov.
unknown

e For high-dimensional distributions, standard statistics are:
(i) intractable to compute;
(ii) have little/no power;
(iii) statistical assumptions typically not met (data too sparse).
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e New simulation-based statistic for goodness-of-fit testing high-dimensional data called the stochastic rank statistic (SRS).

e Main idea: For any elements y and ¢’ in the domain, define a linear order y < v’. If p = q then observed data point y;

(¢ =1,...,n) should be uniformly distributed when ranked within a large dataset {y, ..

e Issue: For discrete data, order statistics are ill-defined (there are ties).

e Solution: Break ties uniformly-at-random by pairing each y; with a uniform number u

/ iid
SYnt ~Np.

; used to break ties.

e Exact: The SRS has an exact (non-asymptotic) null distribution. Easy to use for hypothesis testing (no approximations).

e Consistency: The SRS is uniformly distributed if and only if p = q.

e Practical: Goodness-of-fit test is simple and easy to implement.

e Flexible: Practitioner encodes domain-knowledge by designing linear order < to specify which characteristics to check

for goodness-of-fit.

Discrete Goodness-of-Fit Tests Using Stochastic Rank Statistics

Algorithm 1 Discrete Goodness-of-Fit Testing Procedure

observed samples {y1,y2,. ..
Input: ¢ strict total order < on T', of any order type;

number m > 1 of datasets to resimulate;

| significance level «;

Output: Decision whether to reject null hypothesis Hp : p = q against alternative

( simulator for candidate distribution p over finite or countable sample space T
, Yn } sampled i.i.d. from unknown distribution q;

H: : p # q at significance level «.

m} and cell probabilities 1/(m + 1).

l: for:=1,2,...,n do
g XOXW . XP sy
3: Uéz), Ul(z), B 5 Uniform(0, 1)
& e IXY <y +0XE =g, U < U
5: Compute p-value of observed ranks {ri,...,r,} assuming cell labels {0,1,2,...,
6: return reject if p < «, else not reject.
observation domain hypothesized linear ordering
(finite /countable) distribution < on domain
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(2) Simulate n datasets (8) Compute stochastic rank r; of each y;
within the 7-th simulated dataset.

(1) Given observations yj.p

from unknown distribution q. of size m from p.
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(a) Sampling distribution of four different probe statistics {ti,t2,t3,t4} of a dataset of par-
titions, as sampled from p (Eq. (9); blue) and from q (Eq. (10); green) estimated by Monte
Carlo simulation. Vertical red lines indicate 2.5% and 97.5% quantiles. Even though p # q,
the distributions of these statistics are aligned in such a way that a statistic t;(Y1.m) ~ q
is unlikely to appear as an extreme value in the sampling distribution of the corresponding
statistic t;(X1.m ) ~ p, which leads to under-powered resampling-based tests.
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(4) Generate histogram of the ranks and
analyze the rank histogram for uniformity.

Sampling Dist (X ~ p, X1, ~ P)

5 T r———1 L

LI D R A D D B |
8 9 10 11 12 13 14 15

I
7
Rank

Sampling Dist (Y ~ q, X1.,, ~ p)

1 r 1 1 1 171
8 9 10 11 12 13 14 15

I 1 I 1 ) 1 1 I

0 1 2 3 4 5 6 7
Rank
(b) Monte Carlo simulation of the
rank statistic illustrates its significant
uniform distribution under the null
hypothesis (top) and significant non-
uniform distribution under the alter-
native hypothesis (bottom).

Figure 4: Comparison of the sampling distribution of (a) various bootstrapped probe statistics with (b) the SRS, for
testing p := CRP(0.26,0.76) /2 + CRP(0.19,5.1)/2 vs. q := CRP(0.52,0.52) (i.e., distributions on partitions of {1,...,20}).
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Example: Distributions on Binary Strings
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e Let domain {0, 1}k be the set of all length k& binary strings.
e Define the following distributions to be uniform over all strings x = (z1,...,xx) € {0, 1}k which satisfy the given predicates:

Pind : uniform on all strings,
Ptie ©+ T1 = X2 =+ = T/2-

Podd - Zle zr; =1 (mod?2).
e Each distribution assigns marginal probability 1/2 to each bit z; (1 <17 < k).

e All deviations from the uniform distribution p;,q are captured by higher-order relationships.

e The five orderings used for comparing binary strings are

<lex : Lexicographic (dictionary) ordering,
<par : Parity of ones, ties broken using <ex,
<one : Number of ones, ties broken using =<ex,
~<coo - Cooler ordering (randomly generated),

<abj : De Bruijn sequence ordering.

e Null distribution: p = Pind
e Alternative distributions: q ::= wpe + (1 — w)Pina (mixtures of pi,q with the other two distributions)

e Bit strings of length k& = 16 with n = 256 observations so that domain size is 65, 536 and 0.4% of the domain size is observed.

Theoretical Properties of the Stochastic Rank Statistic

Theorem 1. Let T be a finite or countably infinite set, let < be a strict total
order on T, let p and q be two probability distributions on T, and let m be a
positive integer. Consider the following random wvariables:

Xo ~q (1)

Xi: X500 s s X &1 p (2)

Uo,U1,Us,...,Up ~" Uniform(0, 1) (3)

R:Z;-nzl [ X < Xo| +1|X; = Xo,U; < Up|. (4)

Then p = q if and only if for all m > 1, the rank R is uniformly distributed on
the set of integers [m + 1] == {0,1,2,...,m}.

Corollary 2. If p # q, then there is some m > 1 such that R 1s not uniformly
distributed on [m + 1].

Theorem 3. If p # q, then there is some M > 1 such that for all m > M, the
rank R is not uniformly distributed on [m + 1].

Corollary 4. Let < denote the lexicographic order on T X [0, 1] induced by
(7,<) and ([0,1],<). Suppose E[1[(X,U1) < (Y,Up)]] # 1/2 for Y ~q, X ~ p,
and Uy, U1 ~"9 Uniform(0,1). Then for all m > 1, the rank R is non-uniformly
distributed on [m + 1].

Theorem 5. Given significance level o = 2®(—c) for ¢ > 0, there is an ordering
for which the proposed test with m = 1 achieves power 3 > 1 — ®(—c) using

n~ 4c¢?/Loo (p, q)* (5)

samples from q, where ® is the distribution function of a standard normal.
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Application: MCMC Convergence of Dirichlet Process Mixtures
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The uniformity of the SRS (bottom row) captures convergence behavior of MCMC sampling

algorithms for Dirichlet process mixture models that are not captured by standard diagnostics such as the

logscore (top row).

posterior samples.

7(8) = / (0l )m(y/|9)dy' 7 (6') A8

data-averaged posterior is identically distributed to prior.

e Algorithm 2 specifies the ordering over partitions.

In recent work, [TBS—+18| describe general procedure for validating inference from Bayesian algorithms that can generate

For prior w(#) and likelihood 7(y|0), integrating the posterior over the joint returns the prior:

Simulating datasets y ~ m(y) from marginal distribution and running posterior inference w(#|y) over parameters, the

We repeatedly sampled n = 100 data points {z+.....x, }. simulated from DPMM over R” with Gaussian component models.
3 15 y Ly [

From SBC, the data-averaged posterior m(z1.,|%1.n,) Over zy., is equivalent to the CRP prior 7(z1.,).

. . . . -~ =4 . .
Figure shows goodness-of-fit with respect to the true posterior of approximate samples 2;., (=~ 10*° different values) using

Rao-Blackwellized Gibbs, Auxiliary Variable Gibbs, and No-Gaps Gibbs (Algorithms 3, 8, and 4 of [Nea00], respectively).

Algorithm 2 Total order < on the set of partitions 11y

[ . Partition 7 == {my,ma,...,mx} € IIn with k blocks.
e Partition v = {v1,vs3,...,v;} € IIn with | blocks.
Output: LT if 7 < v; GT if w > v; EQ if m = v.

1: if £k <1 then return LT > v has more blocks
2: if £ > | then return GT > 7 has more blocks
3: & < blocks of w sorted by value of least element in the block
4: U + blocks of v sorted by value of least element in the block
9: forb=1,2,...,1l do

6: if |7y| < |7p| then return LT > v, has more elements
7: if |7,| > |op| then return GT > 71p has more elements
8: m; < values in 7, sorted in ascending order

9: v, <— values in p sorted in ascending order

10: fori=1,2,...,|m,| do

I - if m, ; < v, ,; then return LT > 7, has smallest element
12: if m, ; > v, ; then return GT > v, has smallest element

13: return EQ
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Application: MCMC Convergence of Ising Model Samplers
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Figure : Assessing the goodness-of-fit of approximate samples of a 64 x 64 Ising model for Gibbs sampling and Metropolis—
Hastings sampling (with the custom spin proposal from [Mac03]) at two temperatures using the SRS. In both cases, the
SRS converges to its uniform distribution more rapidly for samples obtained from MH than for those from Gibbs sampling.

This work was published as:

A Family of Exact Goodness-of-Fit Tests for High-Dimensional Discrete Distributions,
Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics, PMLR 89:1640-1649, 2019.



