
• Names are unique identifiers like GUIDs, memory locations, cluster names

• gensym creates a fresh name

• Often treated as a probability distribution,

e.g. as a prior for a Dirichlet process [e.g. Roy & al.’08]

• Can we use random samples as fresh names?

✓ Continuous samples have 0 collision probability

− Subtlety: Names can stay private inside functions

− Example: the following function name -> bool always return false

• Stark’s ν-calculus [Stark‘93] = higher-order programming with names

• We can translate ν-calculus into a higher-order PPL with continuous distributions where

− names become real numbers

− fresh name generation becomes sampling

• Privacy can be very subtle, e.g. compare

Higher-Order Probabilistic Programming and Name Generation
Marcin Sabok1, Sam Staton2, Dario Stein2, Michael Wolman1

• tl;dr gensym = rnd

• Name generation and probabilistic programming have interesting connections

• Random samples are a good semantics for fresh names

− Was folklore for ground programs (various gensym implementations, randomized GUIDs)

− We proved that the semantics is abstract even when higher-order functions are involved

− Unified semantics of probability + names, more refined than traditional semantics (Nominal sets)

• Name-generation ideas like privacy naturally appear when reasoning about probabilistic programs

− Randomization = anonymization

− Bayesian inference on function types must be limited, as not to leak private information

(define draw-class (DPmem 1.0 gensym))
(define class

(mem (lambda (obj) (draw-class))))

• Can the following random function real -> bool

always be replaced by the constant one?

• Yes: We prove a `privacy equation’ – randomizing a value anonymizes it (x is private)

• We cannot condition on functions being equal, as this would distinguish (A) and (B)

let x = gensym() in fun y -> x == y (A*)

let x = normal(0,1) in fun y -> x == y (A)

fun y -> false (B)

Name generation

A theory of random functions

[Denotational Semantics: Quasi-Borel spaces]

Which mathematical framework can analyze higher-order functions + continuous distributions?

• Measure theory is insufficient [Aumann’61]; quasi-Borel spaces [Heunen’17] are a convenient tool

• Ours is the first work to analyze quasi-Borel function spaces in detail.

• Proof sketch: Measurable collections are known as Borel-on-Borel [Kechris’87]

• Using descriptive set theory: If is Borel-on-Borel and

then is at most countable.

Main result

Conclusions

Theorem:

Quasi-Borel space semantics is fully abstract for ν-calculus up to first-order function types

POPL’21; https://arxiv.org/abs/2007.086381 McGill University 2 University of Oxford

@damast93

let a = normal(0,1) in
let b = normal(0,1) in

fun x -> if x == b then b else a

• Full abstraction: Two name generating programs are equivalent if and only if the

corresponding probabilistic programs are equivalent, e.g. (A*) and (A)

let a = normal(0,1) in
let b = normal(0,1) in

fun x -> if x == a then b else a

vs

− a is revealed

− b remains private

− a is revealed

− a can then be used to reveal b

− for this, the function must be called twice

[taken from ongoing research by Hale, Kammar, Margetts,
Melham, Staton, Szymczak, Vidgen]

