
Non-Cognitive Predictors of Student Success:
A Predictive Validity Comparison Between Domestic and International Students

The integration of Sum-Product Networks into DeepProbLog
paved the way for System 2 approaches and so allowed

to perform inference, marginalization, and sampling in
linear time, as well as training with incomplete data.

Abstract: We introduce Sum-Product Logic
(SPLog), a deep probabilistic logic programming
language (DPPL) that incorporates learning
through predicates encoded as probabilistic
circuits, specifically sum-product networks. Our
empirical illustrations demonstrate the benefits
of supporting symbolic and deep represent-
tations, both neural and probabilistic circuit ones
for inference and (deep) learning from examples.

METHOD
1. An SPLog program is a ProbLog program that is

extended with a set of ground sum-product
annotated disjunctions (spADs) of the form

𝑠𝑝𝑛 𝑚! , 𝑄, 𝐸 ∷ 𝑎 𝑒, �⃑�" ; … ; 𝑎 𝑒, �⃑�" : −𝑏", … , 𝑏#
2. We use the learning from entailment (i.e. learning

from queries). Given an SPLog program with para-
meters 𝑋 and a set 𝐷 of pairs (𝑞, 𝑝)where 𝑞 is a

query and 𝑝 its desired success probability, we

compute the loss 𝐿:

arg𝑚𝑖𝑛%⃑
1
|𝐷|

=
(',))∈,

𝐿(𝑃-.%⃑ 𝑞 , 𝑝)

RESULTS

I. Joint training with the variational AE

II. Training with incomplete data

III. Tractable Probabilistic
Auto-Encoder

Arseny Skryagin et. Al.
AI&ML Lab, TU Darmstadt, Germany

Sum-Product Logic: Integrating
Probabilistic Circuits into
DeepProbLog

Learn from queries and not from data!

https://www.aiml.informatik.tu-darmstadt.de

+ = 5

Data set

VAE

z1 + z4 = 5

I. Joint training

II. Training with incomplete data

The	total	loss	function	in	case	of	the	stand-alone	fashion
is	defined	as:
ℒ = 𝜔" Q ℒ/01 + 𝜔2 Q 𝑝 𝑧 𝑥 + 𝜔3 Q 𝑝(𝑥|𝑧) + 𝜔4 Q ℒ/05

1 2 3 4 5 6 7 8

Results from 10 classes in the dataset
Column 1: original input 𝑥;
Column 2: direct reconstruction by PAE, 𝑥6789 ;
Column 3: reconstruction from MPE of code, 𝑥6789 ;
Column 4 to 8: reconstruction from conditional sampled
code. 𝑥:!;)<=9

ℒ/01 = 𝑀𝑆𝐸 𝑥, 𝑥9 = "
>
∑?∑# 𝑥?# − 𝑥?#9 2

-- Reconstruction Error. 𝑥?# 𝑥?# represents the 𝑛@A
feature of the 𝑏@A data.

ℒBCC = − "
>
∑? log 𝑝D 𝑥? , 𝑧?

-- Negative Log-likelihood

Specifically, with z = 𝑧EF#G and 𝑥9 = 𝑥H68 , each loss with a
size- 𝐵 batch is defined as:

III. TraPAE

Code at:

Combined with a neural AE

Stand-alone fashion

Specifically, with z = 𝑬 𝑥 and 𝑥9 = 𝑫 𝑬 𝑥 , each loss
with a size- 𝐵 batch is defined as:

ℒ/01 = 𝑀𝑆𝐸 𝑥, 𝑥9 = "
>
∑?∑# 𝑥?# − 𝑥?#9 2

-- Reconstruction Error. 𝑥?# 𝑥?# represents the 𝑛@A
feature of the 𝑏@A data.

𝑝 𝑧 𝑥 = −
1
𝐵
=
?

log 𝑝D 𝑧?|𝑥?

𝑝(𝑥|𝑧) = −
1
𝐵
=
?

log 𝑝D 𝑥?|𝑧?

-- negative Log-likelihoods

ℒ/05 = 𝐿2 = "
2 Q 𝑧2

-- Regularization Term. E.g. the Euclidian norm of the latent
code.

Combined	with	a	neural	autoencoder the	total	loss	
function	is	defined	as:
ℒ = 𝜔" Q ℒ/01 + 𝜔2 Q ℒBCC

