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(How can we learn causal models from diverse sources of observational and experimental data? )
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Q@Qgen function generate_causal_model()
mu_s = @trace(normal(0, 1), :mu_s)
sigma_s = @trace(uniform(0, 1), :sigma_s)
sigma_b = @trace(uniform(0, 1), :sigma_b)
lambda_so = @trace(uniform(0O, 1), :so_weight)

Belief pill. Students are given a pill that sets their belief in their ability to a fixed value.

The belief pill experiment is implemented using a single “do” intervention.

Encouragement. Students are encouraged by their advisor, increasing their belief in

quote

s ~ normal(mu_s, sigma_s)

b ~ normal(s, sigma_b)

logit_o = s * lambda_so

o ~ bernoulli(1l/(1+exp(-logit_o)))

end

quote

quote

s ~ normal(mu_s, sigma_s)

b ~ normal(s + 3, sigma_b)

logit_o = s * lambda_so

o ~ bernoulli(1l/(1+exp(-logit_o)))
end

their ability by a fixed value. The encouragement experiment is implemented using a
single “shift” intervention.

lambda_bo = @trace(uniform(0, 1), :bo_weight)
edge = Qtrace(bernoulli(0.5), :edge)

if edge

logit_o_expr = quote s * $so_weight + b * $bo_weight end
else

logit_o_expr quote s * $so_weight end
end

Assessment. Students are given an assessment which (i) reduces the student’s uncer-
tainty about their academic ability and (ii) increases their skill. The assessment
experiment is implemented by composing a “variance scaling” intervention and a
“shift” intervention.

causal_model = quote
s ~ normal($mu_s, $sigma_s)
b ~ normal(s, $sigma_b)
logit_o = $logit_o_expr
o ~ bernoulli(1/(1+exp(-logit_o)))

quote

s ~ normal(mu_s, sigma_s) s ~ normal(mu_s, sigma_s)

b ~ normal(s, sigma_b)

end
return causal_model

Observational and Experimental Data Likelihood

Q@gen function generate_data(NObs, NBeliefPill, NEncouragement, NAssessment)

“Belief and b ~ normal(s + 3, sigma_b) end

skill matter”

. observational_model = Qtrace(generate_causal_model())
= % + * - - -
loglt—o S ) lambda_so b . 1am})da—bo belief_pill_model = applyDoIntervention(observational_model, :b, 5)
o v bernoulll(1/(1+eXp(-loglt_o))) encouragement_model = applyShiftIntervention(observational_model, :b, 3)
assessment_model = applyVarianceScalingIntervention(applyShiftIntervention(observational_model, :s, 2),

end MiniStan Prior Samples b, 1/100)

logit_o = s * lambda_so + b * lambda_bo
) o ~ bernoulli(1l/(1+exp(-logit_o)))
Belief end

quote quote
s ~ normal(-0.592, 0.302) s ~ normal(1.892, 0.108)
b ~ normal(s, 0.724) b ~ normal(s, 0.301)

observational_data = Qtrace(interpretMiniStan(observational_model, n_runs=N0Obs), :obs)

belief_pill_data = Q@trace(interpretMiniStan(belief_pill_model, n_runs=NBeliefPill), :belief_pill)
logit_o = s * 0.503 + b % 0.491 logit_o = s * 0.542 encouragement_data = Q@trace(interpretMiniStan(encouragement_model, n_runs=NEncouragement), :encouragement)
o ~ bernoulli(1/(1 + exp(-logit_o))) o ~ bernoulli(1/(1 + exp(-logit_o))) assessment_data = Qtrace(interpretMiniStan(assessment_model, n_runs=NAssessment, :assessment)

end end end

= Stochastically generate MiniStan programs [5] to encode a prior distribution over causal model structures and parameters.
= Programmatically edit the generated MiniStan programs to reflect experimental conditions.
= Interpret the MiniStan programs to induce a likelihood given observational and experimental data.

2. Interventions

Experiments can be represented as the composition of MiniStan program transformations.

4. Experiments and Discussion
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function applyShiftIntervention(program, var, shift) function applyDoIntervention(program, var, newValue)
walk(program) do expr walk (program) do expr
Omatch expr begin Omatch expr begin
:($x ~ normal($mean, $std)) && if x == var end => :($x ~ normal($mean + $shift, $std)) :($x = $val) && if x == var end => :($var = $newValue)
:($x ~ uniform($a, $b)) && if x == var end => :($x ~ uniform($a + $shift, $b + $shift)) :($x ~ $dist) && if x == var end => :($var = $newValue)
: ($x = $value) && if x == var end => :($x = $value + $shift) _ => expr
=> expr end
end

end
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Progam . . = Causal models are represented as code. Causal programs can express many kinds of causal relationships, including context-dependent
EXperlmental maximum causal dependencies. Future work: Can more expressive grammars of causal programs [6] help us learn more realistic causal models of the
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Prior beliefs are represented as code generators. Naive priors over causal graphs fail to focus on a promising subset of the super-
exponentially many hypotheses, and assume that all causal parameters are independent. Future work: How can the Bayesian synthesis

Experimental approach be used to encode more richly structured priors [3, 8] over causal models using probabilistic programs?
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Data Interventions/experiments are represented as code transformations. The Bayesian synthesis approach to causal inference can be used to
process data from any experiment that can be described in terms of programs that modify causal program source code. This differs from “do”
interventions in causal graphs [4], or manually specified per-model experiment effects [2]. Future work: How can the Bayesian synthesis

o True causal parameters o / o
approach be used to model realistic [7] experimental conditions?
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