Hierarchical Bayesian Modelling for High Throughput Measurement Arkadij Kummer and Eric J. Ma, Novartis Institutes for Biomedical Research $\lambda_{_{alpha}}$

Protein Engineering

• Mutation

Goal: Estimate true activity of protein, given replicate measurements. (Sometimes singleton replicates.)

Application: Use downstream in constructing prediction models.

Problems:

1. Some samples are measured only once. 2. Plate shift effects.

Regularization and uncertainty in decision-making

alpha ~

(~10⁴)

- Bayesian posteriors give us uncertainties, even for singleton measurements.

- Regularization guards against extreme values produced by random chance.

- Posterior likelihoods give us statistically principled path towards prioritization of samples.

Estimation Model Hierarchical Beta distribution modelling

Fitting: ADVI because large number of measurements (10⁴-10⁵), and large number of measurements

Upgraded Estimation Model Factoring in plate shift effects