Hierarchical Bayesian Modelling Estimation Model
for High Th roughput Measurement Hierarchical Beta distribution modelling
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Goal: Estimate true activity of protein, Problems: I Ikel | h OOd
given replicate measurements. (Sometimes 1. Some samples are measured only once.
singleton replicates.) 2. Plate shift effects.

Fitting: ADVI because large number of measurements (10%-10°), and large number of measurements
Application: Use downstream in construct- (~10%

ing prediction models.

Regularization and Uncertainty Upgraded Estimation Model
in decision-ma k|ng Factoring in plate shift effects
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- Bayesian posteriors give us uncertainties, even for singleton measurements. df
- Regularization guards against extreme values produced by random chance. plate,

- Posterior likelihoods give us statistically principled path towards prioritization of samples. \mtant
likelihood ~ ‘




