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Approximation and transformation via (re-)interepretation

Introduction: We need ‘autograd for integrals’

Example: detecting EEG changepoints

Functional Tensors: a language for automatic integration over array-valued variables

Extending the language: parallel-scan over sequential structure Example: forecasting BART ridership

We extend lazy 

tensor expressions

to include 

dimensions 

of size ‘real’ and 

implement 

semisymbolic

integration

On GitHub:

pyro-ppl/funsor

Our parallel-scan algorithm computes this in 

O(log(T)) on a T-processor parallel machine:

For Tensor terms, the MarkovProduct op 

corresponds to chain matrix multiplication:

i.e. the binary operation is a GEMM:

We do collapsed variational inference in a neural Kalman filter to model 

rides between all 47 BART stations for 10 years of hour-level counts:

Probabilistic modelling and inference offer a unifying approach to many machine learning tasks, including quantifying uncertainty, 

learning structured generative models, producing interpretable explanations of data, and learning from weak or missing labels.

Probabilistic programming languages like Pyro allow specification of probabilistic models in high-level programming languages.

But many models that mix many different discrete and continuous variables still need custom inference strategies, and there is 

no lower-level analogue of automatic differentiation software intermediate between fully symbolic and fully black box integration.

Probabilistic programs generate lazy expressions with free 

variables. Inference algorithms integrate over free variables: 

Approximate inference computations also generate lazy sum-

product expressions in the same expression language.

Pyro represents terms with discrete free variables as torch.Tensors.  

We extend this representation to other functions, encoding them as 

“tensors” where some of the “dimensions” have size “real”:

We define a set of specific terms that are closed under variable 

substitution, sum-product operations, and various approximations:

Most integrals defined by Funsor terms cannot be computed directly.  We 

rewrite lazy expressions by evaluating them with many different interpreters. 

Many common sum-product expressions have linear chain structures.  

We define a generic operation on atomic funsor terms for collapsing this structure:

We use a moment matching interpreter to 

fit a switching linear dynamical system:

Some rules trigger PyTorch ops:

Some trigger further rewrites:

Some rewrite subexpressions into 

approximate versions. monte_carlo
rewrites Tensor and Gaussian to Delta:

def elbo_loss(features, counts): 
q = guide(features, counts)

with interpretation(lazy):
p = model(features, counts) 
pq = p − q

with interpretation(monte_carlo):
elbo = funsor.Integrate(q, pq)

return elbo

def guide(features, counts):
loc, sc = ...
diag_normal = fdist.Normal(

loc, sc, value=“gr_t”)
return diag_normal

def model(features, counts):
gr_t = funsor.Variable(

"gr_t", ...)["time"]
init, trans, obs, rate = ...
...
prior = MarkovProduct(

ops.logaddexp, ops.add,
trans + obs(gate_rate=gr_t), 
"time", {"state": "state(time=1)"})

llk = fdist.Poisson(rate["origin", "destin"])
return prior + llk(value=counts)

@interpretation(moment_matching_interpretation)
def marginal_log_prob(data, s_trans, x_trans, y_dist): 

...
for t, y in enumerate(data):

ss[t] = Variable(f"s_{t}", bint(2))
xs[t] = Variable(f"x_{t}", reals(5))
...
log_prob += fdist.Categorical(

s_trans(s=ss[t − 1]), value=ss[t])
log_prob += x_trans(s=ss[t], x=xs[t − 1], y=xs[t])

log_prob = log_prob.reduce(ops.logaddexp, 
{ss[t − 2].name, xs[t − 2].name})

log_prob += y_dist(s=s_vars[t], x=x_vars[t], y=y)

for t in range(2): 
log_prob = log_prob.reduce(ops.logaddexp, 

{s_vars[T − 2 + t].name, x_vars[T − 2 + t].name}) 

return log_prob

@dispatched_interpretation
def monte_carlo(cls, *args): ...

@monte_carlo.register(Integrate, Funsor, Funsor, set)
def monte_carlo_integrate(log_measure, integrand, vs):

log_measure = log_measure.sample()
return eager.dispatch(

Integrate, log_measure, integrand, vs)

@eager.register (Binary, Op, Tensor, Tensor) 
def eager_binary_tensor(op, lhs, rhs): 

inputs, (x, y) = align_tensors(lhs, rhs) 
data = op(x.data, y.data) 
return Tensor(data, inputs, lhs.dtype)

@eager.register(Binary, AddOp, Delta, Funsor) 
def eager_add_delta(op, lhs, rhs):

if lhs.name in rhs.inputs:
rhs = rhs(∗∗{lhs.name: lhs.point}) 
return op(lhs, rhs) 

return None  # defer to default implementation
Funsor expressions are closed 

under these approximation rewrites.

Operational semantics: designing for performance and ease of implementation

The term language has an obvious default operational semantics backed by high-performance tensor libraries like JAX and PyTorch. This not only gives

us differentiable, hardware-accelerated kernels, but provides multiple tracing JIT compilers that compile away all runtime pattern-matching overhead.

Operational semantics: term rewriting with a hierarchy of tagless final interpreters

Operational semantics: closure under approximation

Gaussian terms are unnormalized block-

structured multivariate Gaussian densities.

Closed under products and marginalization.

Numerically stable representation:

information vector and precision matrix.

MomentMatching: rewrite Gaussian mixture terms to 

single moment-matched multivariate Gaussian term.

Only specify one additional pattern on top of Exact.

MonteCarlo: rewrite Gaussian and Tensor terms to 

Delta distributions over samples from those terms.

Infinitely differentiable by construction (via DiCE).

Some expressions have no equivalent form under exact semantics. The term language was carefully chosen to be closed under popular approximations 

which are interpreters that preserve types but not semantics. This allows us to evaluate all expressions semi-numerically (rather than symbolically).

Sometimes expressions are expensive to 

evaluate directly or need to be simplified for 

pattern-matching with existing rewrite rules.

We rewrite these expressions with interpreters 

that preserve their exact semantics.

Examples: variable elimination algorithms

that rewrite N-ary sum-product expressions to 

sequences of binary sum-product expressions.

Observation: these interpreters are completely 

generic in the sum and product operations.

We can apply them to evaluate sum-product 

expressions with any commutative semiring, 

like max-sum, or even multiple semirings.

https://github.com/pyro-ppl/funsor

