
Training dAta

TyXe : Pyro-Based Bayesian Neural Networks for Pytorch Users in 5 Lines of Code

Training dAta

Hippolyt Ritter (1,3) , Theofanis Karaletsos (1,2) (1) (at submission) Uber AI Labs, San Francisco, California

(2) Facebook, Menlo Park, California(3) University College London, UK

Deterministic net Posterior samples

We cleanly separate prior, likelihood, inference and neural architecture, enabling a flexible workflow
that leverages Pytorch and Pyro to independently iterate over any of these components.

High-level interface for training...

...and test time prediction.

0

Sampling logic (local reparameterization)
can be modified through a context
manager both at train and test time. No
coupling of prior, inference and sampling
in a layer class.

Unified interface for variational
inference and MCMC.

Application example: Bayesian Resnet

Training Data
Ground Truth
Model Predictions with 3 stds

BNN-specific inference features

Desiderata:

• We want to make the model Bayesian

• We want to iterate rapidly over choices

• We want to examine what that has bought us

TyXe & Pyro facilitate:

• Different priors

• Different variational posteriors

• Different Inference Methods

• Last-layer methods

• Refining pre-trained (i.e. MLE models)

We can pick a pre-existing architecture from Pytorch:

Various libraries simplify the workflow
for a deterministic network, but training
BNNs is often cumbersome. Packages
typically provide implementations for
specific combinations of prior, inference
method and layer type, leaving users
with few options for the probabilistic
model definition and making it hard to
plug in existing network architectures.

Neural networks fit a single function to the data, but many are similarly plausible.

Experiments CIFAR10:
Impact on test-calibration

Motivation

Experiments CIFAR10:
Application to SVHN-OOD detection

We examine model robustness to capturing OOD

samples with a case study applied to SVHN data.

TyXe models improve over MLE here (MF wins).

Code: https://github.com/karalets/tyxe

Pre-trained Network

(MLE Baseline)

MF wins!

Architectures
• Manually defined nn.Modules, e.g. fully connected networks

• Architectures from torchvision.models (e.g. Resnet or wide Resnet)

Keep trained means, train
‘uncertainty’ bits.

Weight priors

• IID prior (supports Pyro distributions, e.g. Normal or mixtures of Normals)

• Layerwise (allows for different variances depending on the layer size)

• Flexible choice for which layers to perform inference on, e.g. last-layer only

Inference
• Variational posteriors through pyro.infer.autoguides

• HMC and NUTS through pyro.infer.mcmc

• Flexible factorized variational Gaussian posterior that allows for local

reparameterization, limiting the variance and only training means or variances

Likelihoods
• Binary

• Categorical

• Homoskedastic Gaussian (known or unknown variance)

• Heteroskedastic Gaussian

Key features

We introduce TyXe (Greek: chance), a Pyro- and Pytorch-based libary that facilitates
constructing and training Bayesian neural networks for Pytorch practitioners.

More to come…

https://github.com/karalets/tyxe

