. Automatic Enumeration of Discrete Speeding up NUTS via JIT Compilation
Num Per] Latent Variables — lIterative NUTS

Using Composable Effects for Flexible and

4
Egm] l 3
Accelerated Probabilistic Programming
1
Q 0 1213 14 15
" . . M . index
: Du Phan Neeraj Pradhan Martin Jankowiak A X Plate notation of d
num.pyro.ai : A Gaussian Mixture A graphical representation of how binary trees are constructed in
(UIUC) (Facebook) (Broad InStItUte) @ Model ITERATIVEBUILDTREE. The orange node is the leaf generated at the current
< step. Blue nodes are the leaves stored in memory for the purpose of
¢ 2 Ti N checking the U-Turn condition. White nodes are past leaves that have
been removed from memory.
Probabilistic Modeling with JAX Support for Pyro Primitives
def gmm(data, K): Algorithm 2 ITERATIVEBUILDTREE
phi = sample(“phi”, Dirichlet(np.ones(K))) Input initial node z, tree depth d
_ _ o _ with plate("K", K, dim=-1): Initialize storage S[0], S[1], ..., S[d — 1]
NumPyro is a library for probabilistic inference built on # declare a trainable param ~mu_= sample("mu", Normal(np.arange(K), 1)) for n < 0to 2% — 1 do
JAX, that has the same interface for model SpeCification p = numpyrooparam("p"’ np.ones(‘]@)’ with p}ate('il- 'Hlﬁn(gata)' qlm;_‘ll?ls z < LEAPFROG(2)
and inference as Pyro. constraint=positive) z = iame e("z", Categorical(phi)) i if 72 is even then
sample("obs", Normal(mu[z], 1), obs=data) i + BITCOUNT(n)
S[i] «+ =
JAX is a high-level tracing library for program # sample a random value _ _ else _
transformations of Python and NumPy functions. e.g. x = numpyro.sample("x", Normal(®, p)) Effect handlers allow to modify the behavpr of the ?/gets the numberofcandldate nodes
automatic differentiation (grad), JIT compilation (jit) ' ' program, hence enable more advanced inference 'l T(_R_Al;‘;;“(‘fo‘zﬁ’(‘)l 1)
vectorization (vmap), and parallelization (pmap). Inference 4 declare a batch dimension mechanism such as emjr?eratlon to marginalize out the imin < tmaz — I + 1
subroutines in NumPyro use effect handlers to inspect and with numpyro.plate("data", y.shape[0]): discrete latent variable "z". I.n particular, effect Ifllandle.rs . fu‘;;;‘“ﬁ_‘”l"s’fflf{};’b,(s[k] 2)
modify program behavior and freely compose with JAX allow us to run the program in two modes: one in which i'ftumigng Foon ’
transformations resulting in significant speedup via # observe a random variable discrete latent variables are sampled and one in which | return TREE(S[0], z, T'rue)
parallelization and JIT compilation. numpyro.sample("y", Normal(x, 1), obs=y) fchey are enumerated. The first mode can be used t.o return TREE(S[0], z, False)
' L inspect the model structure and the second mode is o
used to compute the joint probability of the model. Memory Efficiency: Store only even numbered

nodes z,_at indices given by BITCOUNT(K). Requires
O(log N) memory.

Effect Handlers Fast Inference for Both Small and Large Dataset Regimes

Effect handlers provide a way to inject effectful computation It is easy to write fast vectorized inference utilities by combining m 3
into primitive statements in a probabilistic program, e.g. effect handlers like seed, condition and trace with JAX £ =M NUMIPYFG CPU LIGAIO2Z)
recording the random choices made in an execution trace. transformations like vmap and jit. Q o ambvre 27 tHeated) o
. ot lomiets : Time taken per leapfrog step (in ms.) g' 103! -4-- stan cypu (float6d) .- P o
This lets us: - | | | e ogistic_regression(x, y=None): Framework HMM® COVTYPE A R = v s
e Expose a unified modeling and inference interface that ndims = np.shape(x)[-1] - v == Lot o)
is largely the same as Pyro. o= num - : Stan (64-bit CPU) 0.53 135.94 5 |- AT -
" _ _ o = pyro.sample('m', Normal(@, 1).expand([ndims] G Emed @EEE Wl b T i e *
e Speed up critical subroutines via parallelization and b 1 (BN 1(6 :) () Pyro (32-bit CPU) 30.51 32.76 ﬁ)_) . al : ,,,,,,, *-
. . . = - Y e
JIT compilation, since these effects can be freely numpyro.sample('b’, Normal(e, 1)) Pyro (GPU) 3.36 o —— g .
composed with JAX transformations. return numpyro.sample('y', Bernoulli(logits=x @ m + b), NumPyro (32-bit CPU) 0.09 30:11 g 102 e
e Enable parallel enumeration of discrete latent obs=y) NumPyro (64-bit CPU) 0.15 71.18 o o PP s LA
variables, reparameterization such as loc-scale NumPyro (GPU) - 1.46 = T———— |
- = 101 102
decentering and neural transport for HMC. # Run inference to generate samples from the posterior number of features (M)
Some basic examples of effect handlers: kernel = NUTS(model=logistic_regression)
mcmc = MCMC(kernel, num_warmup, num_samples) 6 Average effective sample size with 1000 warmup steps Time taken per effective sample (in ms.) for different
seed memc . run(random. PRNGKey (1), x, y=y) and 1000 samples for each run in Stan, NumPyro (32 bit), frameworks on the Sparse Kernel Interaction Model (SKIM)
e Seeds fn with a PRNGKey. Every call to sample inside Y and NumPyro (64 bit) are 652, 556, and 778 respectively. example using NUTS, as the number of features (M) is varied.

les = .get 1
fn results in splitting of PRNGKey to generate a fresh samples = memc.get_samples()

seed for subsequent calls.
e seed(fn, rng)(...) def predict_fn(rng_key, param, *args):

conditioned_model = condition(logistic_regression, param)

Conclusion

2 Records the input, output, and function calls inside of return seed(conditioned-model, rng_key)(*args) e NumPyro is a library for doing probabilistic ¢ NumPyro's effect handlers are composable with JAX's
sample, param statements in fn. inference. It is batteries included with modules transformations. This composability allows us to
e trace(fn).get_trace(...) # Generate batch of PRNGKeys for distributions, bijective transforms, and effect o offer the same modeling language as Pyro with
rngs_sim = random.split(random.PRNGKey(2), num_samples) handlers. features such as automatic enumeration of discrete
condition # Vectorized prediction using vmap e NumPyro uses JAX transformations under the latent variables.
e Conditions unobserved sample sites in fn to values in posterior_predictive = vmap(lambda rng_key, param: hood for hardware acceleration, automatic o leverage JAX transformations to parallelize and JIT
. gsﬁg.ition(fn, data)(...) predict_fn(rng_key, param, x))(rng_keys_pred, samples) differentiation, and vectorization. compile static inference subroutines for significant

speed ups.

