
NumPyro:
Using Composable Effects for Flexible and

Accelerated Probabilistic Programming

Probabilistic Modeling with JAX

Conclusion

6 Average effective sample size with 1000 warmup steps
and 1000 samples for each run in Stan, NumPyro (32 bit),
and NumPyro (64 bit) are 652, 556, and 778 respectively.

Time taken per effective sample (in ms.) for different
frameworks on the Sparse Kernel Interaction Model (SKIM)
example using NUTS, as the number of features (M) is varied.

A graphical representation of how binary trees are constructed in
IterativeBuildTree. The orange node is the leaf generated at the current
step. Blue nodes are the leaves stored in memory for the purpose of
checking the U-Turn condition. White nodes are past leaves that have
been removed from memory.

Effect Handlers
Effect handlers provide a way to inject effectful computation
into primitive statements in a probabilistic program, e.g.
recording the random choices made in an execution trace.

This lets us:
● Expose a unified modeling and inference interface that

is largely the same as Pyro.
● Speed up critical subroutines via parallelization and

JIT compilation, since these effects can be freely
composed with JAX transformations.

● Enable parallel enumeration of discrete latent
variables, reparameterization such as loc-scale
decentering and neural transport for HMC.

Some basic examples of effect handlers:

seed
● Seeds fn with a PRNGKey. Every call to sample inside

fn results in splitting of PRNGKey to generate a fresh
seed for subsequent calls.

● seed(fn, rng)(...)

trace
● Records the input, output, and function calls inside of

sample, param statements in fn.
● trace(fn).get_trace(...)

condition
● Conditions unobserved sample sites in fn to values in

data.
● condition(fn, data)(...)

Support for Pyro Primitives

declare a trainable param
p = numpyro.param("p", np.ones(10),
 constraint=positive)

sample a random value
x = numpyro.sample("x", Normal(0, p))

declare a batch dimension
with numpyro.plate("data", y.shape[0]):

 # observe a random variable
 numpyro.sample("y", Normal(x, 1), obs=y)

NumPyro is a library for probabilistic inference built on
JAX, that has the same interface for model specification
and inference as Pyro.

JAX is a high-level tracing library for program
transformations of Python and NumPy functions. e.g.
automatic differentiation (grad), JIT compilation (jit),
vectorization (vmap), and parallelization (pmap). Inference
subroutines in NumPyro use effect handlers to inspect and
modify program behavior and freely compose with JAX
transformations resulting in significant speedup via
parallelization and JIT compilation.

https://num.pyro.ai Du Phan
(UIUC)

Neeraj Pradhan
(Facebook)

Martin Jankowiak
(Broad Institute)

def gmm(data, K):
 phi = sample("phi", Dirichlet(np.ones(K)))
 with plate("K", K, dim=-1):
 mu = sample("mu", Normal(np.arange(K), 1))
 with plate("N", len(data), dim=-1):
 z = sample("z", Categorical(phi))
 sample("obs", Normal(mu[z], 1), obs=data)

Memory Efficiency: Store only even numbered
nodes zk at indices given by BitCount(k). Requires
O(log N) memory.

Speeding up NUTS via JIT Compilation
— Iterative NUTS

● NumPyro is a library for doing probabilistic
inference. It is batteries included with modules
for distributions, bijective transforms, and effect
handlers.

● NumPyro uses JAX transformations under the
hood for hardware acceleration, automatic
differentiation, and vectorization.

Plate notation of
Gaussian Mixture
Model

Fast Inference for Both Small and Large Dataset Regimes

def logistic_regression(x, y=None):

 ndims = np.shape(x)[-1]

 m = numpyro.sample('m', Normal(0, 1).expand([ndims]))

 b = numpyro.sample('b', Normal(0, 1))

 return numpyro.sample('y', Bernoulli(logits=x @ m + b),

 obs=y)

Run inference to generate samples from the posterior

kernel = NUTS(model=logistic_regression)

mcmc = MCMC(kernel, num_warmup, num_samples)

mcmc.run(random.PRNGKey(1), x, y=y)

samples = mcmc.get_samples()

def predict_fn(rng_key, param, *args):

 conditioned_model = condition(logistic_regression, param)

 return seed(conditioned_model, rng_key)(*args)

Generate batch of PRNGKeys

rngs_sim = random.split(random.PRNGKey(2), num_samples)

Vectorized prediction using vmap

posterior_predictive = vmap(lambda rng_key, param:

predict_fn(rng_key, param, x))(rng_keys_pred, samples)

Automatic Enumeration of Discrete
Latent Variables

Effect handlers allow to modify the behavior of the
program, hence enable more advanced inference
mechanism such as enumeration to marginalize out the
discrete latent variable “z”. In particular, effect handlers
allow us to run the program in two modes: one in which
discrete latent variables are sampled and one in which
they are enumerated. The first mode can be used to
inspect the model structure and the second mode is
used to compute the joint probability of the model.

● NumPyro’s effect handlers are composable with JAX’s
transformations. This composability allows us to
○ offer the same modeling language as Pyro with

features such as automatic enumeration of discrete
latent variables.

○ leverage JAX transformations to parallelize and JIT
compile static inference subroutines for significant
speed ups.

It is easy to write fast vectorized inference utilities by combining
effect handlers like seed, condition and trace with JAX
transformations like vmap and jit.

