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Conclusion

6 Average effective sample size with 1000 warmup steps 
and 1000 samples for each run in Stan, NumPyro (32 bit), 
and NumPyro (64 bit) are 652, 556, and 778 respectively.

Time taken per effective sample (in ms.) for different 
frameworks on the Sparse Kernel Interaction Model (SKIM) 
example using NUTS, as the number of features (M) is varied.

A graphical representation of how binary trees are constructed in 
IterativeBuildTree. The orange node is the leaf generated at the current 
step. Blue nodes are the leaves stored in memory for the purpose of 
checking the U-Turn condition. White nodes are past leaves that have 
been removed from memory.

Effect Handlers
Effect handlers provide a way to inject effectful computation 
into primitive statements in a probabilistic program, e.g. 
recording the random choices made in an execution trace.

This lets us:
● Expose a unified modeling and inference interface that 

is largely the same as Pyro.
● Speed up critical subroutines via parallelization and 

JIT compilation, since these effects can be freely 
composed with JAX transformations.

● Enable parallel enumeration of discrete latent 
variables, reparameterization such as loc-scale 
decentering and neural transport for HMC.

Some basic examples of effect handlers:

seed
● Seeds fn with a PRNGKey. Every call to sample inside 

fn results in splitting of PRNGKey to generate a fresh 
seed for subsequent calls.

● seed(fn, rng)(...)

trace
● Records the input, output, and function calls inside of 

sample, param statements in fn.
● trace(fn).get_trace(...)

condition
● Conditions unobserved sample sites in fn to values in 

data.
● condition(fn, data)(...)

Support for Pyro Primitives

# declare a trainable param
p = numpyro.param("p", np.ones(10),
                  constraint=positive)

# sample a random value
x = numpyro.sample("x", Normal(0, p))

# declare a batch dimension
with numpyro.plate("data", y.shape[0]):

    # observe a random variable
    numpyro.sample("y", Normal(x, 1), obs=y)

NumPyro is a library for probabilistic inference built on 
JAX, that has the same interface for model specification 
and inference as Pyro.

JAX is a high-level tracing library for program 
transformations of Python and NumPy functions. e.g. 
automatic differentiation (grad), JIT compilation (jit), 
vectorization (vmap), and parallelization (pmap). Inference 
subroutines in NumPyro use effect handlers to inspect and 
modify program behavior and freely compose with JAX 
transformations resulting in significant speedup via 
parallelization and JIT compilation. 
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def gmm(data, K):
    phi = sample("phi", Dirichlet(np.ones(K)))
    with plate("K", K, dim=-1):
        mu = sample("mu", Normal(np.arange(K), 1))
    with plate("N", len(data), dim=-1):
        z = sample("z", Categorical(phi))
        sample("obs", Normal(mu[z], 1), obs=data)

Memory Efficiency: Store only even numbered 
nodes zk at indices given by BitCount(k). Requires 
O(log N) memory.

Speeding up NUTS via JIT Compilation 
— Iterative NUTS

● NumPyro is a library for doing probabilistic 
inference. It is batteries included with modules 
for distributions, bijective transforms, and effect 
handlers.

● NumPyro uses JAX transformations under the 
hood for hardware acceleration, automatic 
differentiation, and vectorization.

Plate notation of 
Gaussian Mixture 
Model

Fast Inference for Both Small and Large Dataset Regimes

def logistic_regression(x, y=None):

  ndims = np.shape(x)[-1]

  m = numpyro.sample('m', Normal(0, 1).expand([ndims]))

  b = numpyro.sample('b', Normal(0, 1))

  return numpyro.sample('y', Bernoulli(logits=x @ m + b),

                        obs=y)

# Run inference to generate samples from the posterior

kernel = NUTS(model=logistic_regression)

mcmc = MCMC(kernel, num_warmup, num_samples)

mcmc.run(random.PRNGKey(1), x, y=y)

samples = mcmc.get_samples()

def predict_fn(rng_key, param, *args):

  conditioned_model = condition(logistic_regression, param)

  return seed(conditioned_model, rng_key)(*args)

# Generate batch of PRNGKeys

rngs_sim = random.split(random.PRNGKey(2), num_samples)

# Vectorized prediction using vmap

posterior_predictive = vmap(lambda rng_key, param: 

predict_fn(rng_key, param, x))(rng_keys_pred, samples)

Automatic Enumeration of Discrete 
Latent Variables

Effect handlers allow to modify the behavior of the 
program, hence enable more advanced inference 
mechanism such as enumeration to marginalize out the 
discrete latent variable “z”. In particular, effect handlers 
allow us to run the program in two modes: one in which 
discrete latent variables are sampled and one in which 
they are enumerated. The first mode can be used to 
inspect the model structure and the second mode is 
used to compute the joint probability of the model.

● NumPyro’s effect handlers are composable with JAX’s 
transformations. This composability allows us to 
○ offer the same modeling language as Pyro with 

features such as automatic enumeration of discrete 
latent variables. 

○ leverage JAX transformations to parallelize and JIT 
compile static inference subroutines for significant 
speed ups.

It is easy to write fast vectorized inference utilities by combining 
effect handlers like seed, condition and trace with JAX 
transformations like vmap and jit.


