
Target Distribution
use 
ANY 

program

Importance 
Proposal

use 
ANY 

program

Importance 
Sampler

automatically derive 
importance weights! Simple enough if each 

program supports:

● Simulation
● Density Evaluation

But densities can:

● Be intractable

sum([exp(normal(i,1)) 
     for i in range(100)])

● Fail to exist (with respect to 
the usual reference 
measures)

let x ~ normal(0,1) in (x, 2x)
min(normal(0,1), 0)

Target Distributions
use 
ANY 

programs

Forward + 
Backward Kernels

use 
ANY 

programs

Sequential Monte 
Carlo Sampler

automatically derive 
incremental SMC weights!

Target Distribution
use 
ANY 

program

Transition Proposal
use 
ANY 

program

Metropolis-Hastings-
Green Sampler

Target Distribution
use 
ANY 

program

Variational Family
use 
ANY 

program

Variational 
Optimization Alg.

automatically derive 
acceptance probability!

automatically derive 
unbiased gradient 

estimates!

The Goal: Automate Inference Algorithms from Declarative Specs The Challenge: 
Densities

Existing Approaches to Density in Probabilistic Programming 

Trace-Based (Gen, Pyro, ProbTorch, WebPPL)

● Compute joint densities of traces of all primitive random 
choices made by prob. progs — easy multiplications

● Proposal/variational family primitive choices must be in 
1-1 correspondence with target distribution choices

● Expressiveness rests on which primitives are available

Symbolic (Hakaru, Stochaskell, PSI, Bhat et al, Mattinson & Ong)

● Transform prob. progs into (unbiased estimators of) 
densities with respect to certain reference measures

● Must “total” (exactly evaluate) possibly intractable 
densities that appear in denominators (e.g., proposals)

● Supports some loops, but not general recursion

def flip(p):
  return sample(rand()) < p

with proposal(b):
  return [sample(b ? 
           uniform(0, p) :
           uniform(p, 1))]

with proposal(choices):
  return choices

with proposal(y):
  return [(y - a) / (b - a)]

def geometric(p):
  if sample(flip(p)):
    return 0
  return 1 + sample(geometric(p))

with proposal(n):
  return n == 0 ? [t] : [f, n-1]

def flip_and_flip(p):
  return sample(flip(p)) && sample(flip(p))

with proposal(b):
  return b ? [t, t] : sample(flip(0.5)) ? [f] : [t, f]

with proposal(flips):
  return b ? [] : [len(flips) == 1]

Equip every probabilistic function P, at definition time, with 
a helper probabilistic function Q (its internal proposal), 

which takes as input the return value of P, and 
generates as output a possible list of return values of 

P’s callees. 

(If Q makes probabilistic calls, it needs its own 
internal proposal—creating an inference tower.)

Why? Given any two valid tower-equipped programs over the same output space 
(F and G, with F << G), we’ll show how to automatically derive a valid importance sampler.

The technique supports recursion, does not require absolute continuity w.r.t. any 
particular base measure, does not require evaluating integrals or large sums.

More Examples:

def rejection(p, pred):
  x = sample(p)
  return pred(x) ? x : sample(rejection(p, pred))

with proposal(accepted):
  x = sample(p)
  if pred(x) || sample(flip(0.1)):
    return [accepted]
  return [x, accepted]

with proposal(choices):
  if len(choices) == 2:
    return [first(choices), f]
  x = sample(p)
  return pred(x) ? [x] : [x, t]

with proposal(q_choices):
  if len(q_choices) == 1:
    return q_choices
  return second(q_choices) ? [first(q_choices)] : []

uniform(a,b)

flip(p)

geometric(p)

flip_and_flip(p)

rejection(p, pred)

def sum_uniforms():
  return sample(rand()) + 2*sample(rand())

with proposal(y):
  lo, hi = max(y - 2, 0), min(1, y)
  u = sample(uniform(lo, hi))
  return [u, (y - u1) / 2]

with proposal(choices):
  return [first(choices)]

0.42 0.68 1.78

0.82 0.48

0.82 0.48

choices=

0.82

We do not require densities, but do require programs to be equipped with internal proposals

y= 
1.78 0.82

Given two probabilistic programs, F and G, their inference towers define 
a bijection between all rand() calls made by F* and G*, 

which are marginally equal to F and G:

The absolute value of the determinant of the Jacobian of this bijection is the Radon-Nikodym 
derivative of F* w.r.t. G*, an unbiased estimate of dF/dG(x) when (x, ...) ~ G*.

Furthermore, it can be computed compositionally, using the Cauchy-Binet Theorem:

Each prob. prog.’s tower can be encapsulated behind estimate and propose, 
an alternative to the common logpdf / sample interface. 

Further, estimate & propose for a program F can be implemented in terms of estimate & propose for its callees.

Sampling t’ ~ G returns x

Sampling r’ ~ G.Q.Q(x, t’) returns 
q’

Sampling s’ ~ G.Q.Q.Q.Q(x, t’, r’) 
returns u’

Sampling q ~ F.Q(x) returns t

Sampling s ~ F.Q.Q.Q(x,q) 
returns r

Sampling u ~ F.Q.Q.Q.Q.Q(x,q,s) 
returns v

Sampling t ~ F returns x

Sampling r ~ F.Q.Q(x, t) 
returns q

Sampling s ~ F.Q.Q.Q.Q(x, t, r) 
returns u

Sampling q’ ~ G.Q(x) returns t’

Sampling s’ ~ G.Q.Q.Q(x,q’) returns 
r’

Sampling u’ ~ G.Q.Q.Q.Q.Q(x,q’,s’) 
returns v’

F* G*

bijection

Simple example:
F = flip(a); G = flip(b)

0 a

1/b 0

# Sample F:
t = sample(rand())
x = t < at’G qF

def uniform(a, b):
  u = sample(rand())
  return u * (b - a) + a

tF

q’G

rand calls in F*

# From G.Q.Q:
if x:
  q’ = t’ / b
else:
  q’ = (t’ - b) / (1 - b)

# Sample uniform inside G.Q:
q’ = sample(rand())

# From F.Q:
t = x ? (q * a) : (q * (1 - a) + a)

# Sample G:
t’ = sample(rand())
x = t < b

rand calls in G*
# Sample uniform inside F.Q:
q = sample(rand())

Bijection from G* → F*

Possible to develop versions of SMC, 
MCMC, and SVI that use these towers, 

enabling expressive proposals and 
variational families.

Right: variational inference with a variational 
family that itself calls a recursive importance 

resampling procedure.

Compare to Parametric Inversion (Tavares et al.) or Gen Internal Proposals (Cusumano-Towner et al.) or Importance-Weighting Combinator (Sennesh et al.)

Compare to Gen’s propose and assess interface methods
Cf. Burda et al., Importance-Weighted Auto-Encoders

https://gen.dev
https://pyro.ai
https://github.com/probtorch/probtorch
http://webppl.org
https://hakaru-dev.github.io
https://davidar.github.io/stochaskell/
https://psisolver.org
https://link.springer.com/chapter/10.1007/978-3-642-36742-7_35
https://popl20.sigplan.org/details/lafi-2020/11/Density-Functions-of-Statistical-Probabilistic-Programs
http://approximateinference.org/2016/accepted/TavaresLezama2016.pdf
https://arxiv.org/pdf/1801.03612
https://esennesh.github.io/files/probprog_2018_combinators.pdf
https://gen.dev
https://arxiv.org/abs/1509.00519

