
Target Distribution
use
ANY

program

Importance
Proposal

use
ANY

program

Importance
Sampler

automatically derive
importance weights! Simple enough if each

program supports:

● Simulation
● Density Evaluation

But densities can:

● Be intractable

sum([exp(normal(i,1))
 for i in range(100)])

● Fail to exist (with respect to
the usual reference
measures)

let x ~ normal(0,1) in (x, 2x)
min(normal(0,1), 0)

Target Distributions
use
ANY

programs

Forward +
Backward Kernels

use
ANY

programs

Sequential Monte
Carlo Sampler

automatically derive
incremental SMC weights!

Target Distribution
use
ANY

program

Transition Proposal
use
ANY

program

Metropolis-Hastings-
Green Sampler

Target Distribution
use
ANY

program

Variational Family
use
ANY

program

Variational
Optimization Alg.

automatically derive
acceptance probability!

automatically derive
unbiased gradient

estimates!

The Goal: Automate Inference Algorithms from Declarative Specs The Challenge:
Densities

Existing Approaches to Density in Probabilistic Programming

Trace-Based (Gen, Pyro, ProbTorch, WebPPL)

● Compute joint densities of traces of all primitive random
choices made by prob. progs — easy multiplications

● Proposal/variational family primitive choices must be in
1-1 correspondence with target distribution choices

● Expressiveness rests on which primitives are available

Symbolic (Hakaru, Stochaskell, PSI, Bhat et al, Mattinson & Ong)

● Transform prob. progs into (unbiased estimators of)
densities with respect to certain reference measures

● Must “total” (exactly evaluate) possibly intractable
densities that appear in denominators (e.g., proposals)

● Supports some loops, but not general recursion

def flip(p):
 return sample(rand()) < p

with proposal(b):
 return [sample(b ?
 uniform(0, p) :
 uniform(p, 1))]

with proposal(choices):
 return choices

with proposal(y):
 return [(y - a) / (b - a)]

def geometric(p):
 if sample(flip(p)):
 return 0
 return 1 + sample(geometric(p))

with proposal(n):
 return n == 0 ? [t] : [f, n-1]

def flip_and_flip(p):
 return sample(flip(p)) && sample(flip(p))

with proposal(b):
 return b ? [t, t] : sample(flip(0.5)) ? [f] : [t, f]

with proposal(flips):
 return b ? [] : [len(flips) == 1]

Equip every probabilistic function P, at definition time, with
a helper probabilistic function Q (its internal proposal),

which takes as input the return value of P, and
generates as output a possible list of return values of

P’s callees.

(If Q makes probabilistic calls, it needs its own
internal proposal—creating an inference tower.)

Why? Given any two valid tower-equipped programs over the same output space
(F and G, with F << G), we’ll show how to automatically derive a valid importance sampler.

The technique supports recursion, does not require absolute continuity w.r.t. any
particular base measure, does not require evaluating integrals or large sums.

More Examples:

def rejection(p, pred):
 x = sample(p)
 return pred(x) ? x : sample(rejection(p, pred))

with proposal(accepted):
 x = sample(p)
 if pred(x) || sample(flip(0.1)):
 return [accepted]
 return [x, accepted]

with proposal(choices):
 if len(choices) == 2:
 return [first(choices), f]
 x = sample(p)
 return pred(x) ? [x] : [x, t]

with proposal(q_choices):
 if len(q_choices) == 1:
 return q_choices
 return second(q_choices) ? [first(q_choices)] : []

uniform(a,b)

flip(p)

geometric(p)

flip_and_flip(p)

rejection(p, pred)

def sum_uniforms():
 return sample(rand()) + 2*sample(rand())

with proposal(y):
 lo, hi = max(y - 2, 0), min(1, y)
 u = sample(uniform(lo, hi))
 return [u, (y - u1) / 2]

with proposal(choices):
 return [first(choices)]

0.42 0.68 1.78

0.82 0.48

0.82 0.48

choices=

0.82

We do not require densities, but do require programs to be equipped with internal proposals

y=
1.78 0.82

Given two probabilistic programs, F and G, their inference towers define
a bijection between all rand() calls made by F* and G*,

which are marginally equal to F and G:

The absolute value of the determinant of the Jacobian of this bijection is the Radon-Nikodym
derivative of F* w.r.t. G*, an unbiased estimate of dF/dG(x) when (x, ...) ~ G*.

Furthermore, it can be computed compositionally, using the Cauchy-Binet Theorem:

Each prob. prog.’s tower can be encapsulated behind estimate and propose,
an alternative to the common logpdf / sample interface.

Further, estimate & propose for a program F can be implemented in terms of estimate & propose for its callees.

Sampling t’ ~ G returns x

Sampling r’ ~ G.Q.Q(x, t’) returns
q’

Sampling s’ ~ G.Q.Q.Q.Q(x, t’, r’)
returns u’

Sampling q ~ F.Q(x) returns t

Sampling s ~ F.Q.Q.Q(x,q)
returns r

Sampling u ~ F.Q.Q.Q.Q.Q(x,q,s)
returns v

Sampling t ~ F returns x

Sampling r ~ F.Q.Q(x, t)
returns q

Sampling s ~ F.Q.Q.Q.Q(x, t, r)
returns u

Sampling q’ ~ G.Q(x) returns t’

Sampling s’ ~ G.Q.Q.Q(x,q’) returns
r’

Sampling u’ ~ G.Q.Q.Q.Q.Q(x,q’,s’)
returns v’

F* G*

bijection

Simple example:
F = flip(a); G = flip(b)

0 a

1/b 0

Sample F:
t = sample(rand())
x = t < at’G qF

def uniform(a, b):
 u = sample(rand())
 return u * (b - a) + a

tF

q’G

rand calls in F*

From G.Q.Q:
if x:
 q’ = t’ / b
else:
 q’ = (t’ - b) / (1 - b)

Sample uniform inside G.Q:
q’ = sample(rand())

From F.Q:
t = x ? (q * a) : (q * (1 - a) + a)

Sample G:
t’ = sample(rand())
x = t < b

rand calls in G*
Sample uniform inside F.Q:
q = sample(rand())

Bijection from G* → F*

Possible to develop versions of SMC,
MCMC, and SVI that use these towers,

enabling expressive proposals and
variational families.

Right: variational inference with a variational
family that itself calls a recursive importance

resampling procedure.

Compare to Parametric Inversion (Tavares et al.) or Gen Internal Proposals (Cusumano-Towner et al.) or Importance-Weighting Combinator (Sennesh et al.)

Compare to Gen’s propose and assess interface methods
Cf. Burda et al., Importance-Weighted Auto-Encoders

https://gen.dev
https://pyro.ai
https://github.com/probtorch/probtorch
http://webppl.org
https://hakaru-dev.github.io
https://davidar.github.io/stochaskell/
https://psisolver.org
https://link.springer.com/chapter/10.1007/978-3-642-36742-7_35
https://popl20.sigplan.org/details/lafi-2020/11/Density-Functions-of-Statistical-Probabilistic-Programs
http://approximateinference.org/2016/accepted/TavaresLezama2016.pdf
https://arxiv.org/pdf/1801.03612
https://esennesh.github.io/files/probprog_2018_combinators.pdf
https://gen.dev
https://arxiv.org/abs/1509.00519

