
U N I V E R S I T Y O F C O P E N H A G E N
D E P A R T M E N T O F C O M P U T E R S C I E N C E

EinStein VI: General and Integrated Stein Variational Inference in NumPyro
Ahmad Salim Al-Sibahi (UCPH), Ola Rønning (UCPH), Christophe Ley (UGent), Thomas Hamelryck (UCPH)

Introduction and User Interface

def model(X, y=None):
Wl = np.zeros((4, 3))
Ws = np.ones((4, 3))

bl = np.zeros(3)
bs = np.ones(3)

W = sample('W1', Normal(Wl, Ws))
b = sample('b1', Normal(bl, bs))
probs = softmax(X @ W + b)
with plate('data', X.shape[0]):
sample('y', Categorical(probs),

obs=y)

def guide(X, y=None):
Wl = param('Wl', np.zeros((4, 3)))
Ws = param('Ws', np.ones((4, 3)),

constraint=positive)
bl = param('bl', np.zeros(3))
bs = param('bs', np.ones(3),

constraint=positive)
W = sample('W', Normal(Wl, Ws))
b = sample('b', Normal(bl, bs))

y_pred = einstein.predict(state, X_test)['y']
print(f"Accuracy: {np.mean(y_pred == y_test)*100:.2f} %")

Model Inference Program

Training

Prediction

data = load_iris()

X_train, X_test, y_train, y_test = \

train_test_split(data.data, data.target)

einstein = EinStein(model, WrappedGuide(guide), Adam(0.1), ELBO(),

RBFKernel(), num_particles=100)

state, loss = einstein.train(rng_key, 15000, X_train, y_train,

callbacks=[Progbar()])

Integrated Stein VI Theory

Implementation Challenges

Experiments and Results

Einstein VI is a NumPyro (Phan 2019)
library that integrates the latest
developments of Stein VI (Liu and Wang
2016):
ü Compositional library supporting

various loss functions (ELBO, Rényi
ELBO, custom loss, etc.), automatic
marginalization of discrete variables
(Obermeyer et al 2019), and deep
learning.

ü Inference based on ELBO-within-Stein
core (Nalisnick 2017) with support for
non-linear optimization (Wang and Liu
2019), a wealth of kernels that include
matrix-valued ones (Wang et al. 2019)
for graphical models and higher-order
optimization.

ü Learnable transforms on the parameter
space, including triangular transforms
(Parno and Marzouk 2018) and neural
transforms (Hoffman et al. 2018)

References
D. Phan, N. Pradhan, and M. Jankowiak. Composable effects for flexible and accelerated probabilistic programming in NumPyro. Program Transformations for Machine Learning, 2019. | Q. Liu and D. Wang. Stein variational gradient descent: A general purpose Bayesian inference algorithm. NeurIPS, 2018. | E. Nalisnick. Variational inference with Stein mixtures. In Advances in Approximate Bayesian Inference, 2017. | D. Wang
and Q. Liu. Nonlinear stein variational gradient descent for learning diversified mixture models. ICML 2019. | D. Wang, Z. Tang, C. Bajaj, and Q. Liu. Stein variational gradient descent with matrix-valued kernels. NeurIPS 2019, 2019. | M. D. Parno and Y. M. Marzouk. Transport map accelerated Markov Chain Monte Carlo. SIAM/ASA Journal on Uncertainty Quantification, 6(2):645–682, 2018 | M. D. Hoffman, P. Sountsov, J.
Dillon, I. Langmore, D. Tran, and S. Vasudevan. Neutra-lizing bad geometry in hamiltonian monte carlo using neural transport. 2018. | D. P. Kingma and M. Welling. Auto-encoding Variational Bayes. ICLR 2014, 2014. | R. G. Krishnan, U. Shalit, and D. Sontag. Structured inference networks for nonlinear state space models. AAAI 2017, 2017. M. Jankowiak and T. Karaletsos. Pathwise derivatives for multivariate distributions.
AISTATS 2019, 2019.

Bayesian Variational Inference Matrix-Valued KernelsTwo Forces of EinStein VI
• Goal: Given prior 𝑝(𝑧) over model

parameters 𝑧 and likelihood 𝑝 𝑥 𝑧
over data 𝑥 infer posterior:

𝑝 𝑧 𝑥 = 𝑍!"𝑝(𝑥|𝑧)𝑝(𝑧)
• Problem: Normalization constant
𝑍 = ∫ 𝑝 𝑥 𝑧 𝑑𝑥 is intractable.

• Solution: Variational Inference
• Posit easy to evaluate approximate

distribution 𝑞 𝑧
• Minimize the Kullback-Leibler

(KL) divergence 𝐷#$(𝑞 ∥ 𝑝)
which can be done without
explicitly calculating 𝑍.

• Stein VI: VI (Liu and Wang 2016)
Use particles 𝑧% %&"

' for
approximation, so 𝑞(𝑧) = ∑% 𝛿(% (z)
and minimize KL divergence by
iterating Stein forces 𝑆(𝑧).

• Idea: (Wang et al. 2019) Replace
scalar-valued kernel 𝑘 with matrix-
valued kernel 𝐾 ∶ ℝ)×ℝ) → ℝ)×)

• Update: Change the attractive force:
𝑆+ 𝜽 = 𝔼𝝑~. 𝐾 𝜽, 𝝑 ∇𝜽ℒ(𝜽)
and repulsive force:
𝑆! 𝑧 = 𝔼(!~. ([𝐾(𝑧, 𝑧0)∇(]

• Advantages: Allow pre-conditioning
using second-order matrices like the
Hessian or Fisher information. Allow
factorization of 𝐾 into local kernels
𝐾 ℓ

ℓ based on independencies
given by a graphical model.

Input: Classical parameters � and �0, Stein parameters {✓i}i, model p�(z,x),
guide q✓,�0(z), loss L, kernel interface KI.
Output: Parameter changes based on classical VI (��, ��0) and Stein VI
forces ({�✓i}i).
�� E✓[r�L(p�, q✓,�0)]
��0 E✓[r�0L(p�, q✓,�0)]
{ai}i PyTreeFlatten({✓i}i)
k KI({ai}i)
{�ai}i VMap({ai}i, ai 7!

P
aj

k(aj ,ai)raiL(p�, qPyTreeRestore(a),�0) +

raik(aj ,ai))
{�✓i}i PyTreeRestore({�ai}i)
return ��, ��0, {�✓i}i

Implementing EinStein VI required dealing
with the following challenges:
• Re-initialiable guides We need to re-run

the initialization procedure for each Stein
particle, so that they get different values
for inference. WrappedGuide in the intro
code example allows this support.

• NumPyro and JAX integration We rely
on NumPyro for writing the probabilistic
programs and integrated with their
interface. The algorithm (left) needs JAX
functionality such as vmap to calculate
particle loss in parallel without changing
the user code and PyTrees to map back
and forth between parameters encoded as
Python structures and their monolithic
vectorized particle form that can capture
correlation between particles.

• Kernels We needed a modular interface
to support new kernels, based on particle
information and log-probability.

Algorithm

Parameter Transforms

Assumption: We can write parameters
for loss ℒ! as 𝜃 = 𝒯 𝜙 .
Idea: We can reparametrize the Stein
force:

𝑆" 𝜙 = 𝑆# 𝒯 𝜙 (∇$𝒯 𝜙)%
NumPyro code example on the right

def guide(n_flows=3, h_dim=[2,2]):
flows = flows(n_flows, 2, h_dim)
particle = param('p', array([0.,0.]),

ComposeTrans(flows))
numpyro.sample('x', Delta(particle))

Neal’s Funnel

Double Moon Model

Stein Mixture Latent Dirichlet Allocation (SM-LDA)

Stein Mixture Deep Markov Model (SM-DMM)
Negative test log-likelihood for JSB Chorales dataset using SM-DMM

Krishnan and Shalit 2017 Jankowiak and Karaletsos 2019 EinStein VI
(Ours)

6.85 6.82 6.67
𝑦~𝒩 0,3 𝑥~𝒩(0, exp(

𝑦
2
))

• Problem: As y becomes negative, x
becomes harder to sample using MCMC.

• Result: EinStein VI can be seen to
perform well in the above figure!

• Problem: Multi-modal distribution
which can be hard to fit using
traditional VI

• Result: EinStein VI with neural
transform (3 autoregressive flows of
hidden dimensions (2,2)) works well!

• Goal: Infer topics 𝜽 from document represented as bags of
words 𝒘. Each document is generated according to the
following process:
𝜽 ∼ Dir 𝛼 𝑧2~334 Cat 𝜽 𝑤2~334 Cat 𝜑(" 𝑛 ∈ 1. . 𝑁
• Problem: Discrete latent variable 𝑧2 makes model non-

differentiable
• Implementation: MLP (100 hidden dimensions), 20 topics, 5

Stein particles
• Result: EinStein VI works well with automatic marginalization

provided by NumPyro (Obermeyer et al. 2019)

• Goal: Sequential model inspired by HMMs but with deep
neural networks for transitions and emissions. GRU guide.

• Problem: High-dimensional guide, over 500.000 parameters
• Implementation: 5 Stein particles, Adam optimizer (lr: 1e-5)
• Result: EinStein VI scales well and performs better than

existing results!

• Assumption: We have a negative loss
function ℒ(𝜽) we would like to
maximize.

• Example: Evidence Lower Bound
(ELBO; Kingma and Welling, 2014).

• Desiderata: We would like to have
flexibility to capture multi-modality
for parameters 𝜽 and quantify
uncertainty on it.

• Idea: Use ELBO-within-Stein
inference (Nalisnick, 2017) which can
be factored into an attractive force:
𝑆+ 𝜽 = 𝔼𝝑~. 𝑘 𝜽, 𝝑 ∇𝜽𝐿(𝜽)
and a repulsive force:
𝑆! 𝜽 = 𝔼𝝑~.[∇𝜽𝑘(𝜽, 𝝑)]

where 𝑘: ℝ)×ℝ) → ℝ is a
statistical kernel like RBF.

Non-linear Stein
• Idea: (Wang and Liu 2019) Allow

scaling of repulsive force 𝑆! 𝜽 by
constant

