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Introduction and User Interface

def model(X, y=None):
Wl = np.zeros((4, 3))
Ws = np.ones((4, 3))

bl = np.zeros(3)
bs = np.ones(3)

W = sample('W1', Normal(Wl, Ws))
b = sample('b1', Normal(bl, bs))
probs = softmax(X @ W + b)
with plate('data', X.shape[0]):
sample('y', Categorical(probs),

obs=y)

def guide(X, y=None):
Wl = param('Wl', np.zeros((4, 3)))
Ws = param('Ws', np.ones((4, 3)),

constraint=positive)
bl = param('bl', np.zeros(3))
bs = param('bs', np.ones(3),

constraint=positive)
W = sample('W', Normal(Wl, Ws))
b = sample('b', Normal(bl, bs))

y_pred = einstein.predict(state, X_test)['y']
print(f"Accuracy: {np.mean(y_pred == y_test)*100:.2f} %")

Model Inference Program

Training

Prediction

data = load_iris()

X_train, X_test, y_train, y_test = \

train_test_split(data.data, data.target)

einstein = EinStein(model, WrappedGuide(guide), Adam(0.1), ELBO(),

RBFKernel(), num_particles=100)

state, loss = einstein.train(rng_key, 15000, X_train, y_train,

callbacks=[Progbar()])

Integrated Stein VI Theory

Implementation Challenges

Experiments and Results

Einstein VI is a NumPyro (Phan 2019) 
library that integrates the latest 
developments of  Stein VI (Liu and Wang 
2016):
ü Compositional library supporting 

various loss functions (ELBO, Rényi
ELBO, custom loss, etc.), automatic 
marginalization of  discrete variables 
(Obermeyer et al 2019), and deep 
learning.

ü Inference based on ELBO-within-Stein
core (Nalisnick 2017) with support for 
non-linear optimization (Wang and Liu 
2019), a wealth of  kernels that include 
matrix-valued ones (Wang et al. 2019) 
for graphical models and higher-order 
optimization.

ü Learnable transforms on the parameter 
space, including triangular transforms 
(Parno and Marzouk 2018) and neural 
transforms (Hoffman et al. 2018)
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Bayesian Variational Inference Matrix-Valued KernelsTwo Forces of EinStein VI
• Goal: Given prior 𝑝(𝑧) over model 

parameters 𝑧 and likelihood 𝑝 𝑥 𝑧
over data 𝑥 infer posterior:

𝑝 𝑧 𝑥 = 𝑍!"𝑝(𝑥|𝑧)𝑝(𝑧)
• Problem: Normalization constant
𝑍 = ∫ 𝑝 𝑥 𝑧 𝑑𝑥 is intractable.

• Solution: Variational Inference
• Posit easy to evaluate approximate 

distribution 𝑞 𝑧
• Minimize the Kullback-Leibler

(KL) divergence 𝐷#$(𝑞 ∥ 𝑝)
which can be done without 
explicitly calculating 𝑍.

• Stein VI: VI (Liu and Wang 2016) 
Use particles 𝑧% %&"

' for 
approximation, so 𝑞(𝑧) = ∑% 𝛿(% (z)
and minimize KL divergence by 
iterating Stein forces 𝑆(𝑧). 

• Idea: (Wang et al. 2019) Replace 
scalar-valued kernel 𝑘 with matrix-
valued kernel 𝐾 ∶ ℝ)×ℝ) → ℝ)×)

• Update: Change the attractive force: 
𝑆+ 𝜽 = 𝔼𝝑~. 𝐾 𝜽, 𝝑 ∇𝜽ℒ(𝜽)
and repulsive force:
𝑆! 𝑧 = 𝔼(!~. ( [𝐾(𝑧, 𝑧0)∇(]

• Advantages: Allow pre-conditioning 
using second-order matrices like the 
Hessian or Fisher information. Allow 
factorization of  𝐾 into local kernels 
𝐾 ℓ

ℓ based on independencies 
given by a graphical model.

Input: Classical parameters � and �0, Stein parameters {✓i}i, model p�(z,x),
guide q✓,�0(z), loss L, kernel interface KI.
Output: Parameter changes based on classical VI (��, ��0) and Stein VI
forces ({�✓i}i).
�� E✓[r�L(p�, q✓,�0)]
��0  E✓[r�0L(p�, q✓,�0)]
{ai}i  PyTreeFlatten({✓i}i)
k  KI({ai}i)
{�ai}i  VMap({ai}i, ai 7!

P
aj

k(aj ,ai)raiL(p�, qPyTreeRestore(a),�0) +

raik(aj ,ai))
{�✓i}i  PyTreeRestore({�ai}i)
return ��, ��0, {�✓i}i

Implementing EinStein VI required dealing 
with the following challenges:
• Re-initialiable guides We need to re-run 

the initialization procedure for each Stein 
particle, so that they get different values 
for inference. WrappedGuide in the intro 
code example allows this support.

• NumPyro and JAX integration We rely 
on NumPyro for writing the probabilistic 
programs and integrated with their 
interface. The algorithm (left) needs JAX 
functionality such as vmap to calculate 
particle loss in parallel without changing 
the user code and PyTrees to map back 
and forth between parameters encoded as 
Python structures and their monolithic 
vectorized particle form that can capture 
correlation between particles.

• Kernels We needed a modular interface 
to support new kernels, based on particle 
information and log-probability.

Algorithm

Parameter Transforms

Assumption: We can write parameters 
for loss ℒ! as  𝜃 = 𝒯 𝜙 . 
Idea: We can reparametrize the Stein 
force:

𝑆" 𝜙 = 𝑆# 𝒯 𝜙 (∇$𝒯 𝜙 )%
NumPyro code example on the right

def guide(n_flows=3, h_dim=[2,2]):
flows = flows(n_flows, 2, h_dim)
particle = param('p', array([0.,0.]),

ComposeTrans(flows))
numpyro.sample('x', Delta(particle))

Neal’s Funnel

Double Moon Model

Stein Mixture Latent Dirichlet Allocation (SM-LDA)

Stein Mixture Deep Markov Model (SM-DMM) 
Negative test log-likelihood for JSB Chorales dataset using SM-DMM

Krishnan and Shalit 2017 Jankowiak and Karaletsos 2019 EinStein VI 
(Ours)

6.85 6.82 6.67
𝑦~𝒩 0,3 𝑥~𝒩(0, exp(

𝑦
2
))

• Problem: As y becomes negative, x 
becomes harder to sample using MCMC. 

• Result: EinStein VI can be seen to 
perform well in the above figure!

• Problem: Multi-modal distribution 
which can be hard to fit using 
traditional VI

• Result: EinStein VI with neural 
transform (3 autoregressive flows of  
hidden dimensions (2,2)) works well!

• Goal: Infer topics 𝜽 from document represented as bags of  
words 𝒘. Each document is generated according to the 
following process:
𝜽 ∼ Dir 𝛼 𝑧2~334 Cat 𝜽 𝑤2~334 Cat 𝜑(" 𝑛 ∈ 1. . 𝑁
• Problem: Discrete latent variable 𝑧2 makes model non-

differentiable
• Implementation: MLP (100 hidden dimensions), 20 topics, 5 

Stein particles
• Result: EinStein VI works well with automatic marginalization 

provided by NumPyro (Obermeyer et al. 2019)

• Goal: Sequential model inspired by HMMs but with deep 
neural networks for transitions and emissions. GRU guide.

• Problem: High-dimensional guide, over 500.000 parameters
• Implementation: 5 Stein particles, Adam optimizer (lr: 1e-5)
• Result: EinStein VI scales well and performs better than 

existing results!

• Assumption: We have a negative loss 
function ℒ(𝜽) we would like to 
maximize.

• Example: Evidence Lower Bound 
(ELBO; Kingma and Welling, 2014). 

• Desiderata: We would like to have 
flexibility to capture multi-modality 
for parameters 𝜽 and quantify 
uncertainty on it.

• Idea: Use ELBO-within-Stein 
inference (Nalisnick, 2017) which can 
be factored into an attractive force:
𝑆+ 𝜽 = 𝔼𝝑~. 𝑘 𝜽, 𝝑 ∇𝜽𝐿(𝜽)
and a repulsive force:
𝑆! 𝜽 = 𝔼𝝑~.[∇𝜽𝑘(𝜽, 𝝑)]

where 𝑘: ℝ)×ℝ) → ℝ is a   
statistical kernel like RBF.

Non-linear Stein
• Idea: (Wang and Liu 2019) Allow 

scaling of  repulsive force 𝑆! 𝜽 by 
constant 


