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Consider structural time series models that 
decompose additively. How can we extend these 
models to make them more expressive while still 
maintaining interpretability?

We could add another “building block” 
term...

...or we could replace static parameters 
with further time varying components.

Block structure and grammar

Instead of defining a single sample node for each 
time slice of a process, define a single sample node 
that describes both the process that generates the 
STS component and the vector of parameters used 
in the data-generating process. 

This shifts complexity from edge to node 
space and corresponds to a particular 
factorization of the model joint likelihood

Define grammar G over these “blocks” f that take 
parameters θ or other blocks as arguments

C(. , .) is the changepoint operator and 
inserts a changepoint at a random time 
by concatenating two models 
represented by two unique sentences

Implementation

Library: https://gitlab.com/daviddewhurst/stsb2; Documentation: https://davidrushingdewhurst.com/stsb2/docs/

Modeling
Small library of generative blocks 
that can be combined into valid 
sentences of the language 
generated by grammar G (with or 
without changepoint operator -- 
with changepoint operator these 
are not causal models)

log_vol_1 = sts.AR1(t1=t1, ...)
log_vol_2 = sts.GlobalTrend(t1=t1, ...).cos()
vol = sts.changepoint(log_vol_1.exp(), log_vol_2.exp(), frac=0.6)
price = sts.RandomWalk(t1=t1, loc=0.0, scale=vol, ...).exp()
sample = price()

E.g., stochastic volatility model with 
changepoint + nontrivial latent 
structure

with stsb2.effects.ProposalEffect(trend):
    trend.parameter_update(
        a=posterior[trend]['a'],
        b=posterior[trend]['b']
    )
    trend_posterior = trend()
    with stsb2.effects.ForecastEffect(...):
        trend_forecast = trend()

Inference
W.I.P. (only proof of concept LF rejection sampling), includes proposal, intervention, and forecast effect 
handlers for converting sample(...) statements into proposal and forecast distributions

Implementation + W.I.P
Non-Markov DGP expressed in single block 
(same as simple first order Markov model
No differentiability assumption
Objects are stochastic -- can sample from 
whole STS or from component parts
Explicitly model decomposition is immediately 
interpretable (compare with GP kernel 
grammar)

Library: https://gitlab.com/daviddewhurst/stsb2; Documentation: https://davidrushingdewhurst.com/stsb2/docs/

Next steps: implement DSL + compiler to 
facilitate a) easier model expression and b) 
model search algorithms (searching for 
optimal string in language generated by 
grammar G subject to some constraints)

init series;  # can have multiple calls or single per init
init trend, seasonal, noise;

result prior_pred_samples, posterior_samples, posterior_pred_samples;

set t1 = 100;
set beta = 0.5;
set scale = 0.5;

define trend = GlobalTrend(t1=t1);
define seasonal = GlobalTrend(t1=t1).cos();
define noise = AR1(t1=t1, beta=beta, scale=scale);

# define the model -- this is a seasonal global trend model
define series = trend + seasonal + noise;

# sample from prior
sample series -> prior_predictive -> prior_pred_samples;

# load some data and do inference
file input "./data/some_data.csv";
assign input -> series;
sample series -> posterior -> posterior_samples;
sample series -> posterior_predictive -> posterior_pred_samples;

Possible DSL syntax -- sample operation generates prior / posterior / posterior predictive 
samples depending on context variable (prior, posterior, posterior_predictive)


