
Structural time series grammar over variable blocks

David Rushing Dewhurst

Consider structural time series models that
decompose additively. How can we extend these
models to make them more expressive while still
maintaining interpretability?

We could add another “building block”
term...

...or we could replace static parameters
with further time varying components.

Block structure and grammar

Instead of defining a single sample node for each
time slice of a process, define a single sample node
that describes both the process that generates the
STS component and the vector of parameters used
in the data-generating process.

This shifts complexity from edge to node
space and corresponds to a particular
factorization of the model joint likelihood

Define grammar G over these “blocks” f that take
parameters θ or other blocks as arguments

C(. , .) is the changepoint operator and
inserts a changepoint at a random time
by concatenating two models
represented by two unique sentences

Implementation

Library: https://gitlab.com/daviddewhurst/stsb2; Documentation: https://davidrushingdewhurst.com/stsb2/docs/

Modeling
Small library of generative blocks
that can be combined into valid
sentences of the language
generated by grammar G (with or
without changepoint operator --
with changepoint operator these
are not causal models)

log_vol_1 = sts.AR1(t1=t1, ...)
log_vol_2 = sts.GlobalTrend(t1=t1, ...).cos()
vol = sts.changepoint(log_vol_1.exp(), log_vol_2.exp(), frac=0.6)
price = sts.RandomWalk(t1=t1, loc=0.0, scale=vol, ...).exp()
sample = price()

E.g., stochastic volatility model with
changepoint + nontrivial latent
structure

with stsb2.effects.ProposalEffect(trend):
 trend.parameter_update(
 a=posterior[trend]['a'],
 b=posterior[trend]['b']
)
 trend_posterior = trend()
 with stsb2.effects.ForecastEffect(...):
 trend_forecast = trend()

Inference
W.I.P. (only proof of concept LF rejection sampling), includes proposal, intervention, and forecast effect
handlers for converting sample(...) statements into proposal and forecast distributions

Implementation + W.I.P
Non-Markov DGP expressed in single block
(same as simple first order Markov model
No differentiability assumption
Objects are stochastic -- can sample from
whole STS or from component parts
Explicitly model decomposition is immediately
interpretable (compare with GP kernel
grammar)

Library: https://gitlab.com/daviddewhurst/stsb2; Documentation: https://davidrushingdewhurst.com/stsb2/docs/

Next steps: implement DSL + compiler to
facilitate a) easier model expression and b)
model search algorithms (searching for
optimal string in language generated by
grammar G subject to some constraints)

init series; # can have multiple calls or single per init
init trend, seasonal, noise;

result prior_pred_samples, posterior_samples, posterior_pred_samples;

set t1 = 100;
set beta = 0.5;
set scale = 0.5;

define trend = GlobalTrend(t1=t1);
define seasonal = GlobalTrend(t1=t1).cos();
define noise = AR1(t1=t1, beta=beta, scale=scale);

define the model -- this is a seasonal global trend model
define series = trend + seasonal + noise;

sample from prior
sample series -> prior_predictive -> prior_pred_samples;

load some data and do inference
file input "./data/some_data.csv";
assign input -> series;
sample series -> posterior -> posterior_samples;
sample series -> posterior_predictive -> posterior_pred_samples;

Possible DSL syntax -- sample operation generates prior / posterior / posterior predictive
samples depending on context variable (prior, posterior, posterior_predictive)

