Structural time series grammar over variable blocks

David Rushing Dewhurst

Consider structural time series models that decompose additively. How can we extend these models to make them more expressive while still maintaining interpretability?

$$y(t) = \varepsilon(t;\sigma) + \sum_{k} f_k(t;\theta_k) + f_{k'}(t;\theta_{k'})$$

...or we could replace static parameters with further time varying components.

$$\varepsilon(t;\sigma) \sim \operatorname{Normal}(0,\sigma^2)$$

Implementation

Modeling

Inference

Small library of generative blocks that can be combined into valid sentences of the language generated by grammar *G* (with or without changepoint operator -with changepoint operator these are not causal models)

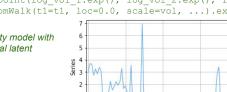
```
with stsb2.effects.ProposalEffect(trend):
    trend.parameter_update(
        a=posterior[trend]['a'],
        b=posterior[trend]['b']
    )
    trend_posterior = trend()
    with stsb2.effects.ForecastEffect(...):
        trend forecast = trend()
```

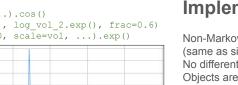
$y(t) = \varepsilon(t;\sigma) + \sum_{k} f_k(t;\theta_k)$

We could add another "building block" term...

 $y(t) = \varepsilon(t;\sigma) + \sum_{k} f_k(t; g_k(t; \theta_k))$

log_vol_1 = sts.AR1(t1=t1, ...)
log vol 2 = sts.GlobalTrend(t1=t1, ...).cos()


vol = sts.changepoint(log_vol_1.exp(), log_vol_2.exp(), frac=0.6)
price = sts.RandomWalk(t1=t1, loc=0.0, scale=vol, ...).exp()
sample = price()


100

150

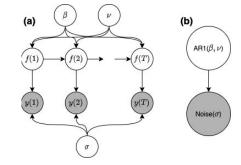
200

E.g., stochastic volatility model with changepoint + nontrivial latent structure

100

Block structure and grammar

Instead of defining a single sample node for each time slice of a process, define a single sample node that describes both the process that generates the STS component *and* the vector of parameters used in the data-generating process.


Define grammar **G** over these "blocks" f that take parameters θ or other blocks as arguments

$$\begin{split} S &\to Q \mid Q + S \\ Q &\to f(p) \mid C(S, f(p)) \mid C(f(p), S) \\ p &\to \theta \mid (S \mid p, ..., S \mid p) \end{split}$$

Implementation + W.I.P

Non-Markov DGP expressed in single block (same as simple first order Markov model No differentiability assumption Objects are stochastic -- can sample from whole STS or from component parts Explicitly model decomposition is immediately interpretable (compare with GP kernel grammar)

Next steps: implement DSL + compiler to facilitate a) easier model expression and b) model search algorithms (searching for optimal string in language generated by grammar **G** subject to some constraints)

This shifts complexity from edge to node space and corresponds to a particular factorization of the model joint likelihood

C(.,.) is the changepoint operator and inserts a changepoint at a random time by concatenating two models represented by two unique sentences

init series; # can have multiple calls or single per init init trend, seasonal, noise;

result prior_pred_samples, posterior_samples, posterior_pred_samples;

set t1 = 100; set beta = 0.5; set scale = 0.5;

define trend = GlobalTrend(t1=t1); define seasonal = GlobalTrend(t1=t1).cos(); define noise = AR1(t1=t1, beta=beta, scale=scale);

define the model -- this is a seasonal global trend model
define series = trend + seasonal + noise;

sample from prior sample series -> prior_predictive -> prior_pred_samples;

```
# load some data and do inference
file input "./data/some_data.csv";
assign input -> series;
sample series -> posterior -> posterior_samples;
sample series -> posterior_predictive -> posterior_pred_samples;
```

Possible DSL syntax -- sample operation generates prior / posterior / posterior predictive samples depending on context variable (prior, posterior, posterior predictive)

Library: https://gitlab.com/daviddewhurst/stsb2; Documentation: https://davidrushingdewhurst.com/stsb2/docs/

W.I.P. (only proof of concept LF rejection sampling), includes proposal, intervention, and forecast effect handlers for converting *sample(...)* statements into proposal and forecast distributions

Library: https://gitlab.com/daviddewhurst/stsb2; Documentation: https://davidrushingdewhurst.com/stsb2/docs/

-200

-600

-800

charles river analytics