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Use delayed sampling as above 
Remove unnecessary pointers (shown by   ) 
Now, only reachable nodes can affect future 
distributions

X

Streaming Delayed Sampling

Synchronous data-flow languages and block diagrams

State of the art model for embedded systems 
E.g., Matlab/Simulink, SCADE, Lustre, Zelus 
Signal: stream of values; System: stream processor  

ProbZelus: add support to deal with uncertainty

Extend Zelus with probabilistic constructs 
Parallel composition: deterministic/probabilistic 
Inference-in-the-loop 
Inference on streams 

let node robot (acc, gps) = u where 
  rec u = controller (x0_dist -> pre x_dist) 
  and x_dist = infer tracker (u, acc, gps)

controlleracc

gps

u
robot

tracker

infer

x_dist

let proba tracker (u, acc, gps) = x where 
  rec  x = sample (mv_gaussian ((x0 -> pre x), noise) 
  and () = observe (gaussian (get_acc x, 1.0), acc) 
  and present gps (pos) ->  do () = observe (gaussian (get_pos x, 0.01), pos) done
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Figure 2. Kalman �lter for the robot example. Variables
are either latent (white, e.g., state x ) or observed (gray, e.g.,
acceleration a). The position p is only sporadically observed.

The command u is set to one of two values as determined
by the initialization operator, �>. On the �rst time step, the
operator returns its left-hand side value, the initial com-
mand u0. On every time step thereafter, the operator re-
turns its right-hand side expression, the output of a Linear-
Quadratic Regulator (LQR) [36] — a stable and optimal con-
troller for such dynamic systems — given the estimation of
the state at the previous step. The unit delay operator, pre, in-
troduces a unit delay to the evaluation of an expression and
therefore returns the value of its expression at the previous
time step.

Inference. The stream x_dist of distributions of state is in-
ferred from the model de�ned by the probabilistic node
kalman given the command u and the observations acc,
and gps. The keyword proba indicates a probabilistic model.

In this example, the model is a Kalman Filter illustrated in
Figure 2. A Kalman �lter is a time-dependent probabilistic
model used to describe inference problems such as tracking,
in which a tracker estimates the true position of an object
given noisy, sensed observations. The robot’s state xt is a la-
tent random variable in that the tracker is not able to directly
observe it. Each arrow connecting two random variables de-
notes a dependence of the variable at the head of the arrow
on the variable at the tail. In this case, the observations at
each time step depends on the current state, and the robot’s
state at a given time step depends only on its states at the
previous time step.

Sampling. Inside kalman, the sample operator samples a
value from a probability distribution. In this case, the ex-
pression samples the current state x from a multivariate
Gaussian with mean obtained by applying the motion model
to the previous state and the command. This code models
the trajectory of a robot where at each time step, the state is
Gaussian-distributed around an estimation computed from
the motion model.

Observations. The expression observe conditions the exe-
cution on observed data. Its �rst parameter denotes a distri-
bution that models the observation and its second parameter
denotes the observed value itself. In this case, at each step,
the �rst observe statement models a Gaussian-distributed
observation of the current acceleration vec_get x 2 given
by acc. The input gps is a signal that is only emitted when

the GPS computes a new position. When a value pos is emit-
ted on gps, the present construct executes its body, further
conditioning the model by adding a Gaussian-distributed
observation of the current position vec_get x 0 given by pos.

2.2 Streaming Inference
A classic operational interpretation of a probabilistic model
is an importance sampler that generates random samples
from the model together with an importance weight measur-
ing the quality of the sample. In this model, each execution
of a sample operator samples a value from the operator’s
corresponding distribution. Each execution of an observe
evaluates the likelihood of the provided observation and mul-
tiplies the current importance weight by this value. Then,
each execution step of infer yields a distribution represented
as a set of pairs (output, weight) or particles. The particles
can be re-sampled at each step to build a particle �lter [13].

The integer parameter to infer determines how many par-
ticles to use: the more particles the user speci�es, the more
accurate the estimate of the distribution becomes. The PF
points in Figure 3 present this improvement in accuracy as
a function of increasing the number of particles for the ro-
bot example. However, as the latency results presents, the
more particles the user speci�es, the more computation is
required for each step because each particle requires a full,
independent execution of each time step of the model.

Streaming Delayed Sampling. Delayed sampling [29] can
reduce the number of particles required to achieve a given
desired quality of inference. Speci�cally, delayed sampling
exploits the opportunity to symbolically reason about the
relationships between random variables to compute closed-
form distributions whenever possible. To capture relation-
ships between random variables, delayed samplingmaintains
a graph: a Bayesian network that can be used to compute
closed-form distributions involving subsets of random vari-
ables. For instance, this inference scheme is able to compute
the exact posterior distribution for our robot example. The
SDS dots in Figure 3 show that the accuracy is independent
of the number of particles since each particle computes the
exact solution.

Figure 4 illustrates the evolution of the delayed sampling
graph as it proceeds through the �rst four time steps of the
robot example (for simplicity we assume that there is no
GPS activation in these four steps). A notable challenge with
the traditional delayed sampling algorithm is that the graph
grows linearly in the number of samples. This property is not
tractable in our reactive context because we would like to de-
ploy our programs under themodel that they run inde�nitely,
thus requiring that they execute with bounded resources. To
address this problem, we propose a novel streaming delayed
sampling (SDS) implementation of the delayed sampling
algorithm. Speci�cally, in Figure 4 the node denoting the
marginal posterior for x at step 1 can be eliminated from the

x = sample(d): introduce a random variable x of distribution d 
observe(d, y): condition on the fact that y was sampled from d 
infer m obs: compute the distribution of output of the model m with respect to obs
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lift turns a deterministic expression into a probabilistic one 
lift:S × (S → S × T ) → S × (S → ΣS × T → [0,∞])
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infer turns probabilistic expressions to a pair of distributions 
infer: S × (S → ΣS × T → [0,∞]) → S 𝚍𝚒𝚜𝚝 × (S 𝚍𝚒𝚜𝚝 → S 𝚍𝚒𝚜𝚝 × T 𝚍𝚒𝚜𝚝)

Probabilistic Streams

Probabilistic Programming

let proba tracker (obs) = x where 
  rec x  = sample (gaussian (0, 10) -> gaussian (pre x, 1)) 
  and () = observe (gaussian (x, 1), obs)

t = 0 t = 1 t = 2

sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)

sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 5)

sample (gaussian (pre x, 1))
observe (gaussian (x, 1), …)

…

x xpre x
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Particle Filtering

Conclusions

SDS is always faster to match accuracy 
Reduction in particle count outweighs symbolic overhead 
SDS can be exact (1 particle) 
PF is impractical for advanced examples

Baseline: SDS with 1,000 particles
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Figure 10. Execution time comparison when 90% of 1000 runs reach an accuracy similar to the baseline (median accuracy of
SDS with 1000 particles) after 500 steps. The number of particles required to reach this accuracy is shown on top of the bars.
The error bars show the 10th and 90th percentiles.

to observations, complicating inference of which measure-
ments are associated to which targets. The accuracy metric
is expectedMOTA⇤ = (1/MOTA) � 1 whereMOTA 2 [0, 1]
is the Multiple Object Tracking Accuracy [3].

Experimental Setup. All the experiments were run on a
server with 32 CPUs (2.60 GHz) and 128 GB memory. We ran
all the benchmarks for 500 steps. In all cases, the inference
runs in bounded memory (see Appendix F.3).
For each algorithm, we evaluated how much time it re-

quired to achieve 90% of runs close to a loss target (out of
1000 runs total):

| log(P90%(loss)) � log(losstarget)| < 0.5.

For each benchmark, the baseline is the median loss of
SDS at 1000 particles as losstarget for that benchmark. We
measured the number of particles required to achieve this
loss, and then measured the total execution time at this par-
ticle count for 500 steps (in Appendix F.2 we also evaluate
loss and step latency across a �xed range of particle counts).

Results. Figure 10 shows the results. The height of each bar
is the median total execution time, and the error bars are
90% and 10% quantiles, aggregated over 1000 runs. Each bar
is labeled with the minimum number of particles required
to achieve the accuracy threshold, accurate to 1.5 signi�cant
digits (100, 150, 200, 250, . . . ). We observe that SDS is able to
compute an exact solution for Beta-Bernoulli, Kalman-1D,
and Robot. In all these examples 1 particle is already enough
to reach the target accuracy. Overall, the results show that the
number of particles required to reach the desired accuracy
with PF implies a signi�cant slowdown compared to SDS.
Moreover, the SLAM and MTT benchmarks show that, in
some cases, PF is not an option: the target accuracy was
not reached with 15, 000 and 2, 500 particles, respectively, at
which point PF was already 10 times slower than SDS and
we stopped the experiments.

As expected, BDS performance numbers are between those
of PF and SDS. At worst, when there is no possible intra-step

symbolic computations (e.g., Beta-Bernoulli), BDS behaves
like a particle �lter and requires as many particles as PF. At
best, BDS performs as well as SDS (e.g., Outlier).

Additionally, Figure 10 also shows that for a given number
of particles, the overhead induced by managing the delayed
sampling graph is signi�cant. Compared to BDS and SDS,
depending on the benchmark, it is possible to use 2 to 4
times as many particles for PF with the same execution time.
However, this is not enough to match the gain in accuracy.

Alternative Baselines. The results presented in Figure 10
do not quantify the speedup of SDS on the SLAM and MTT
benchmarks because the other inference algorithms time out.
To evaluate speedups on these two benchmarks, we used PF
as an alternative baseline instead of SDS. Figure 11 presents
the execution time of PF, BDS, and SDS to reach a loss close
to the median of PF with 2000 and 4000 particles.
We observe that SDS requires a much smaller number

of particles to reach similar accuracy which translates into
speedups ranging from 101 (MTT-2000) to 104 (SLAM-4000).
BDS requires either a similar or smaller numbers of particles.
But the overhead introduced by the graph manipulations
mostly translates in slowdowns compared to PF.

7 Related Work
Probabilistic Programming. Over the last few years there
has been a growing interest on probabilistic programming
languages. Some languages like BUGS [28], Stan [10], or
Augur [23] o�er optimized inference technique for a con-
strained subset of models. Other languages likeWebPPL [20],
Edward [41], Pyro [6], or Birch [32] focus on expressivity
allowing the speci�cation of arbitrary complex models. Com-
pared to these languages, ProbZelus can be used to program
reactive models that typically do not terminate, and inference
can be run in parallel with deterministic components that
interact with an environment.
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Figure 3. Particle �lter (PF) and streaming delayed sampling (SDS) performances for the robot example of Figure 1. Accuracy
is measured using the loss function of the LQR.
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Figure 5. Delayed sampling (DS) and streaming delayed
sampling (SDS) memory consumption in thousands of live
words in the heap per steps for the robot example.

graph at step 3 because the distributions for pre x and x have
fully incorporated its e�ect on their values and, moreover,
the program no longer maintains a reference to the node.

While the standard delayed sampling algorithm will keep
this node alive through the edge pointers it maintains, SDS
builds a pointer-minimal graph representation with a mini-
mal number of edges that 1) ensure that the graph has su�-
cient connectivity to support operations in the traditional
delayed sampling algorithm and 2) only maintain the reacha-
bility of nodes that can e�ect the distribution of future nodes
in the graph. The result is that the memory consumption of
SDS is constant across the number of steps while the memory
consumption of the original delayed sampling implementa-
tion DS increases linearly in the number of steps (Figure 5).

3 Language: Syntax, Typing, Semantics
ProbZelus is a reactive probabilistic language with inference-
in-the-loop which enables interaction between probabilistic
models and deterministic processes. This capability intro-
duces two design requirements. First, a probabilistic model
must be able to receive inputs from an evolving environment.
Second, instead of awaiting the �nal result of the inference,
deterministic processes running in parallel need access to
intermediate results. The resulting inference-in-the-loop en-
ables feedback loops between inferred distributions from
probabilistic models and deterministic processes, which our
design controls by enforcing a separation between the se-
mantics of probabilistic and deterministic execution.
In this section, we formalize the syntax of ProbZelus, in-

troduce a type system that imposes a clear separation be-
tween deterministic and probabilistic expressions, and de�ne
the semantics of the language in a co-iteration framework
where the semantics of probabilistic processes is adapted
from Staton’s measure-theoretic semantics for probabilistic
programs [37]. The co-iterative semantics forms the basis of
a compiler that is described in Section 4.

3.1 Syntax
We focus on the following kernel of ProbZelus. The missing
constructs (e.g., pre and �>) can be compiled into this kernel
via a source-to-source transformation.

d ::= let node f x = e | let proba f x = e | d d
e ::= c | x | (e ,e) | op(e) | f (e) | last x | e where rec E

| present e �> e else e | reset e every e
| sample(e) | observe(e , e) | infer(e)

E ::= x = e | init x = c | E and E
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Evaluation

Semantics

Inference

exact position + color sensor

estimated color of a map cell 

estimated position

Simultaneous Localization And Mapping

Environment: slippery wheels and noisy color sensor 
System: infer current position and map, output command (left/right/up/down) 

At each step:

Move to the next position 
Observe the color of the 
ground 
Use inferred position to 
compute next command

Example: SLAM

deterministic

probabilistic

infer

system

environment

Reactive Probabilistic Programming

Example: Robot

…𝒩(0,10)

𝒩(⋅,1)
δ(3)

𝒩(2.97,0.995)
𝒩(⋅,1)

𝒩(⋅,1)
δ(5)

𝒩(4.32,0.816)

xpre xx xpre x

t = 0 t = 1 t = 2

sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)

sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 5)

sample (gaussian (pre x, 1))
observe (gaussian (x, 1), …)

Delayed Sampling

XX

X X

XX

Example: a 1-D version of the robot tracker

Goal: control a robot’s position using a noisy accelerometer and intermittent GPS 
Feedback between deterministic controller and probabilistic tracker


