Near-optimal exact sampling and optimal approximate sampling for probabilistic programming

Posters 14 & 15

Efficient exact and approximate sampling

As uncertainty continues to play an increasingly prominent role in a range of computations and as programming languages move towards more support for random sampling as one way of dealing with this uncertainty, we anticipate that trade-offs between entropy consumption, sampling accuracy, numerical precision, and wall-clock runtime will form an important set of design considerations for sampling procedures. This work was published as:

Exact sampler (FLDR): The Fast Loaded Dice Roller: A near-optimal exact sampler for discrete probability distributions, Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics, PMLR 108:1036–1046, 2020.

Approximate sampler (OAS): *Optimal approximate sampling from discrete probability distributions,* Proceedings of the ACM on Programming Languages 4, POPL, 36:1–36:31, 2020.

Rejection sampler algorithms

Rejection sampling operates as follows: given a *target distribution* (p_1, \ldots, p_n) and proposal distribution (q_1, \ldots, q_l) (with $n \leq l$), first find a rejection bound A > 0 such that $p_i \leq Aq_i$ $(i = 1, \ldots, n)$. Next, sample $Y \sim q$ from the proposal and flip a Bernoulli $(p_Y/(Aq_Y))$ coin: if the outcome is heads accept Y, otherwise repeat. The probability of halting in a given round is:

$$\Pr\left[\mathsf{Bernoulli}\left(\frac{p_Y}{Aq_Y}\right) = 1\right] = \sum_{i=1}^n p_i / (Aq_i)q_i = 1/A.$$

Algorithm 2 Dyadic rejection sampler (lookup table) // PREPROCESS

- 1: Let $k \leftarrow \lceil \log m \rceil$
- 2: Make size-*m* table *T* with a_i entries $i \ (i = 1, ..., n)$; // SAMPLE B: while true do
- Draw k bits, forming integer $W \in \{0, \ldots, 2^{k-1}\};$
- if (W < m) then return T[W]

Algorithm 1 Uniform rejection sampler

- // PREPROCESS l: Let $D \leftarrow \max(a_1, \ldots, a_n);$
- // SAMPLE
- while true do
- $i \sim \text{FASTDICEROLLER}(n)$; (Lumbroso [16, p. 4])
- $x \sim \text{BERNOULLI}(a_i, D); \text{ (Lumbroso [16, p. 21])}$ if (x = 1) then return *i*;
- Algorithm 3 Dyadic rejection sampler (binary search)
- // PREPROCESS
- 1: Let $k \leftarrow \lceil \log m \rceil$; : Make size-*n* array *T* of running sums of a_i ; // SAMPLE
- while true do
- Draw k bits, forming integer $W \in \{0, \ldots, 2^{k-1}\}$
- if (W < m) then return $\min\{j \mid W < T[j]\};$

Discrete Distribution Generating (DDG) trees

$[p_1]$		[1/2]		[.10]
p_2	=	1/4	=	.01
p_3		1/4		. 0 1

(a) Binary probability matrix (b) Entropy-optimal DDG tree (c) Entropy-suboptimal DDG tree

$$\begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = \begin{bmatrix} 3/10 \\ 7/10 \end{bmatrix} = \begin{bmatrix} . \ 0 \ \overline{1 \ 0 \ 0 \ 1} \\ . \ 1 \ \overline{0 \ 1 \ 1 \ 0} \end{bmatrix}$$

(a) Binary probability matrix

(b) Entropy-optimal DDG tree (c) Entropy-suboptimal DDG tree

(a) Binary probability matrix

THEOREM 2.9 (KNUTH AND YAO [1976]). Let $\mathbf{p} \coloneqq (p_1, \ldots, p_n)$ be a probability distribution for some integer $n \ge 1$. Let A be an entropy-optimal sampler with DDG tree T whose output distribution is equal to **p**. Then $H(\mathbf{p}) \leq \mathbb{E}[L_T(A)] < H(\mathbf{p}) + 2$. Further, T contains exactly 1 leaf node labeled i at level *j* if and only if $p_{ij} = 1$, where $(0.p_{i1}p_{i2}...)_2$ denotes the concise binary expansion of each p_i .

(b) Entropy-optimal DDG tree

Feras Saad, Cameron Freer, Martin Rinard, Vikash Mansinghka

The Fast Loaded Dice Roller (FLDR)

Idea: combine rejection sampling with inversion sampling to obtain a smaller DDG tree

Rejection Sampling

- Given probabilities $(M_i/Z)_{i=1}^n$:
- (1) Let k be such that $2^{k-1} < Z \le 2^k$.
- (2) Draw a k-bit integer $W \in \{0, ..., 2^k 1\}$.
- (3) If W < Z, return integer $j \in [n]$ such that
- $\sum_{i=1}^{j-1} M_i \le W < \sum_{i=1}^{j} M_i$; else go to 2.

Algorithm 4 Fast Loaded Dice Roller (sketch)

- 1. Let $k \coloneqq \lceil \log m \rceil$ and define the proposal distribution $q \coloneqq (a_1/2^k, \dots, a_n/2^k, 1 - m/2^k).$
- 2. Simulate $X \sim q$, using an entropy-optimal sampler for the proposal distribution (Theorem 2.1).
- 3. If $X \leq n$, then return X, else go to step 2.

Algorithm 5 A sparse matrix based implementation of the Fast Loaded Dice Roller using integer arithmetic **Input:** Positive integers $(a_1, \ldots, a_n), m \coloneqq \sum_{i=1}^n a_i$. **Output:** Random integer i with probability $\overline{a_i/m}$.

Entropy near-optimality

Number of Bits to Encode Input Instance $(\log_2(m))$

Figure 2: Depth of DDG tree for a distribution having an entry 1/m, using the Knuth and Yao entropy-optimal sampler (black) and FLDR (red) for $m = 3, ..., 10^5$ (computed) analytically). The y-axis is on a logarithmic scale: the entropy-optimal sampler scales exponentially (Thm. 3.5) and FLDR scales linearly (Thm. 5.1).

Memory, runtime, and preprocessing performance

Figure 4: Comparison of memory and runtime performance for sampling 500 random frequency distributions over n = 1000dimensions with sum m = 40000, using FLDR and six baseline exact samplers. (a) shows a scatter plot of the sampler runtime (x-axis; seconds per sample) versus sampler memory (y-axis; bytes); and (b) shows how the sampler runtime varies with the entropy of the target distribution, for each method and each of the 500 distributions.

Figure 5: Comparison of the preprocessing times (y-axes; wall-clock seconds) of FLDR with those of the alias sampler, for distributions with dimension ranging from n = $10^0, \dots 2 \times 10^4$ (x-axes) and normalizers m = 1000, 10000,and 1000000 (left, center, and right panels, respectively).

Inversion Sampling

- Given probabilities $(M_i/Z)_{i=1}^n$, precision k:
- (1) Draw a *k*-bit integer $W \in \{0, ..., 2^k 1\}$. (2) Let $U' \coloneqq W/2^k$.
- (3) Return smallest integer $j \in [n]$ such that
- $U' < \sum_{i=1}^{j} M_i / Z.$

Table 1: Number of PRNG calls and wall-clock time when drawing 10^6 samples from n = 1000 dimensional distributions, using FLDR & approximate floating-point samplers.

Method	Entropy (bits)	Number of PRNG Calls	PRNG Wall Time (ms)
FLDR	$egin{array}{c} 1 \\ 3 \\ 5 \\ 7 \\ 9 \end{array}$	$123,607\\182,839\\258,786\\325,781\\383,138$	3.69 4.27 5.66 8.54 8.42
Floating Point	all	1,000,000	21.51

Theorem 5.2. The DDG tree T of FLDR in Alg. 4satisfies

 $0 \le \mathbb{E}[L_T] - H(p) < 6.$ (2)

Figure 3: Plot of the three terms in Eq. (3) in the entropy gap (y-axis) from Thm. 5.2, for varying m (x-axis).

Table 1: Number of PRNG calls and wall-clock time when drawing 10^6 samples from n = 1000 dimensional distributions, using FLDR & approximate floating-point samplers.

Method	${ m Entropy}\ { m (bits)}$	Number of PRNG Calls	PRNG Wall Time (ms)
	1	$123,\!607$	3.69
	3	$182,\!839$	4.27
FLDR	5	258,786	5.66
	7	325,781	7.90
	9	$383,\!138$	8.68
Floating Point	all	1,000,000	21.51

PROBLEM 2.15 (INFORMAL). Given a target probability distribution $\mathbf{p} := (p_1, \ldots, p_n)$, a measure of statistical error Δ , and a precision bound $k \geq 1$, construct a k-bit entropy-optimal sampler \hat{T} whose output probabilities $\hat{\mathbf{p}}$ achieve the minimal possible error $\Delta(\mathbf{p}, \hat{\mathbf{p}})$.

Table 4. Precision, entropy consumption, and sampling error of rejection sampling, exact Knuth-Yao sampling,				
and optimal approximate sampling at var	ious levels of precision for	r the Binomial(50, 61/5	500) distribution.	
Method	Precision $k_{(l)}$	Bits/Sample	Error (L_1)	
Exact Knuth and Yao Sampler (Thm. 2.9)	$5.6 \times 10^{104}_{(100)}$	5.24	0.0	
Exact Rejection Sampler (Alg. 1)	$449_{(448)}$	735	0.0	
	$4_{(4)}$	5.03	$2.03 imes 10^{-1}$	
Optimal Approximate Sampler	$8_{(4)}$	5.22	1.59×10^{-2}	
(Alg. $3+7$)	$16_{(0)}$	5.24	6.33×10^{-5}	
(rug. 5+7)	$32_{(12)}$	5.24	1.21×10^{-9}	
	$64_{(29)}$	5.24	6.47×10^{-19}	

PROPOSITION 2.16. Given a target $\mathbf{p} \coloneqq (p_1, \ldots, p_n)$, an error measure Δ , and $k \ge 1$, suppose \hat{T} is a k-bit entropy-optimal sampler whose output distribution is a Δ -closest approximation to **p**. Then $\hat{\mathbf{p}}$ is closer to **p** than the output distribution $\tilde{\mathbf{p}}$ of any sampler T that halts after consuming at most k random bits from the source.

> Table 2. Comparison of the average number of input bits per sample used by inversion sampling, interval sampling, and the proposed method, in each of the six parameterized families using k = 16 bits of precision. Average Number of Bits per Sample Distribution

_____ Benfo Beta Binon Boltzı Discre

f-divergences: statistical error measures

Performance comparison on particular distributions

Optimal Approximate Sampler (OAS)

	Inversion Sampler (Alg. 2)	Interval Sampler [Uyematsu and Li 2003]	Optimal Sampler (Alg. 7)
ord	16	6.34	5.71
Binomial	16	4.71	4.16
nial	16	5.05	4.31
mann	16	1.51	1.03
ete Gaussiai	n 16	6.00	5.14
rgeometric	16	4.04	3.39

Fig. 4. Plots of generating functions g for various f-divergences, a subset of which are shown in Table 1.