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Introduction Numerical Experiments

Hamiltonian Monte Carlo (HMC): sample from continuous target distribution w(q%) o e~U(a") by

4qC (1 Overview Variable selection in Bayesian logistic regression (BLR)
q (t) __ \V/ KC C | - |
. . .y . . . : : : — , Basic setup: y; ~ Bernoulli (o(X; B)),i=1,---,100
introducing auxiliary momentum variables p¢ € RNcand simulating Hamiltonian dynamics q %t( ) (P) Methods used: WEZZS}?ZPRNOXZO, 8 € R, and<a(a?) - 1)/(1 + ) is the sigmoid function.
P 7 = —vqc [/ (qC) Mixed HMC (M-HMC) : Custom JAX implementation vj,3 = 1,-+,20 are binary variables indicating the presence of a particular
o , . — : : : - - : Discontinuous HMC (DHMC) : Custom JAX implementation component of 3, and (0, 257) is an umnformalt;:)/e prior on .
Remarkable empirical success, but can’t be applied to\distributions with mixed discrete and continuous variables HMC-within-Gibbs (HWG) : Custom JAX implementation Joint distribution: p(5, 7. X, ) = N(3/0,250) T % (1 - p)*¥
No-U-Turn Sampler (NUTS) : Using NumPyro, for GMMs e a1 1an
C . _ cy . . . : : here p; = VX, i=1,---,100.
Our Goal: sample from target distribution (x,q¢) o« e~V (®9°) with mixed discrete (z € Q) and continuous (¢“ € R™¢) variables NUTS-within-Gibhs (NwG) - Us 1 sten i PYMC3 where p; = 0/(2 5=y Xis0575),
-within-Gibbs (NwG) : Using compound step in Py Target distribution: p(3,| X, y)
Existine approaches: Specialized Gibbs samplers : Custom Numba implementation Methods tested: M-HMC, DHMC, HwG, NwG, Gibbs (Polson et al., 2013)
& app ' e (Polson et al., 2013) for Bayesian logistic regression Results summary:
° Integrate out the discrete variables: e (Chen et al., 2013) for Correlated topic models e All samplers are accurate
e M-HMC is more efficient than DHMC, HwG, NwG and Gibbs
Performance measure:

— Only applicable on a small scale ®
— Can’t always be carried out automatically Stan  pyro/numpyro

e M-HMC exhibits U-turn behavior

Minimum relative etfective sample size (MRESS) e M-HMC benefits from distributed/more frequent discrete updates

The minimum ESS over all dimensions

. . . Evolution of MRESS as L changes, np =1 Evolution of MRESS as 7y increases, with npL = 600
e Alternate between continuous HMC and generic discrete updates: Normalized by the number of samples 7 — .
| | 7 | | o . - /df: - Tou
— Need long HMC trajectory to suppress random walk behavior 3270 Estimated using multiple independent chains g ~ 1w .
Discrete proposals in M-HMC: . ~¥- Gibbs

— Discrete updates can only be done infrequently PYMC3 Tturing.ji N e

. . . . Q:(z|x) x 7(Z)p;(x|x e e i A it
e Update discrete and continuous variables in tandem: (@) o m(@)p; (@ ) ) ) o e g
N {1 if Z; # x;, & = 4,1 F# J

— Discontinuous HMC (DHMC), Probabilistic path HMC (PPHMC) where p;(Z|x) =

— DHMC 1s best suited for ordinal paramters, and has inefficient embedding and algorithmic structure
— PPHMC only works for phylogenetic trees
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Correlated topic models (CTMs)

24D Gaussian mixture model (GMM) Basic setup:

Basic setup: 7(x, qc) — ¢, N (qC |z, 20) where Given the topics 3, a vector . € R® and a K x K covariance matrix 3, CTM
assumes the following generative process for the dth document with N, words:

= = = 01 = 0.15, 900 = ¢p3 = 0.3, 94 = 0.25,> = 31 1. ng ~ N(u,>)
. Mlxed Hamlltonlan Monte Ca rIO (M-HMC) W1, Wo, 43, 4 are from 24 permutations of —2, 0, 2,4 2 ForeaChng{l’m.’Nd}:
(a) Draw topic assignment 24 ,|ng ~ Categ(f(n4))
Target distribution: 7(z, ¢*) (b) Draw word W p|24.n, 8 ~ Categ(8., )

Mixed Hamiltonian Monte Carlo (M-HMC) MHwWHMC v.s. M-HMC for ID GMM (5 . - Methods tested: M-HMC, DHMC, HwG, NwG, NUTS Target distribution: p(7, z|w; 3, u, )
e M-HMC also evolves the discrete and continuous variables in tandem Require: U, target potential v ’ Results summary: Methods tested: M-HMC, DHMC, HwG, NwG, Gibbs (Chen et al., 2013)
e M-HMC is applicable to any distributions with mixed support (), discrete proposal ij 7. e All samplers are accurate Results summary: e DHMC fails; Gibbs occlusionally fails
e M-HMC can be efficiently implemented using Laplace momentum Input: x((z(z()),) current discre.te state , § i e M-HMC is more efficient than DHMC. HwG and NwG e M-HMC is 3x more efficient than HwG/NwG
s : : : : : ™~ q-*"’, current continuous location = 07 ’ e M-HMC is 20x more efficient than Gibbs
We start with an 1llustrative example on a 1D Gaussian mixture model (GMM) = step size: L. # of steps S e M-HMOC is as efficient as NUTS . .
with 4 mixture componets. Use z € {1, 2, 3,4} to denote the discrete variable, , » S1EP (0) C(0) P 5 > - Gibbs sampler, traceplot and histogram 5
and ¢ € R to denote the continuous variable. We want to sample from function M-HMC(z'", ¢~*", ¢, L|U, Q) ="
(2, ¢%) = baN (¢ |1, ) kP ~ Exponential(1), p¢® ~ N(0,1) N —— . NUTS, MRESS: 1.06 x 103 S 27
where | ’ h r — 2O, kP « kPO 0 ) 20 40 60 80 . M-HMC, MRESS: 1.07 x 10~ 3
b1 = 0.15. by = by = 0.3. by = 0.25.5 = 0.1 qc - qC(O) pc - pC(O) t, # of steps in one M-HMC iteration E NwG, MRESS: 3.32 x 10~ S 75
! e s " o ' ’ 7 _(_ T % : 4 HMC-within-Gibbs, traceplot and histogram
_ _ 9, for ¢ from 1 to L do (b) MBwWHMC, 10” samples, y = (-2,0,2,4) = DHMC, MRESS: 3.61 > 10 g
/Ll——2,/$2—0,,u3—2,,u—4 C C C C o . 4 = 00
. L. . L. q-,p- < leapfrog(q-,p~,€) g7 HwG, MRESS: 4.24 > 10 B s
The right panel shows M-HMC 1n this simple case. The simple change implied U@ O (3l) A o
_ . . ~ -~ . e ’ Trlx \ = -5.0
by the M-HMC framework leads to a more efficient sampler that is able to correct T~ Q(|r), AE < log T 0(e)3) v S

|
N
o

the bias from naively doing Metropolis-Hastings (MH) updates within HMC.

M (v, MoHMC . " lied 10 arbit istribat " # Naive MH within HMC ) _ M-HMC, traceplot and histogram
ore generally, M- can be easily applied to arbitrary distributions wi 1% tial(1 AE then : I | | | | S 00
mixed support, and introduces minimal overhead compared to existing HMC l xxg)%en fal(1) > Biasea! * 2000 4000 6000 8000 10000 B 25
\_methods. Reter to the paper for more details on the general algorithm. Yy end if Number of samples S 50
C _75
>
g Comparison with Discontinuous HMC (DHMC): ) or
e DHMC relies on embedding that works best for ordinal parameters # M-HMC -4 -2 0 2 4 6
D if k” > AE then (c) M-HMC, 10° samples, u = (=2,0,2,4)" -
T, =n <= q; € (an,ap11],0=0a1 <ag <--- o C I
r+— 7, kP « kP — AE (/,7
e DHMC needs to update all discrete variables at every step, inefficient end if & Qs © o n C u S I o n S
M-HMC, 10° samples, y = (—2,2,0,4)7 DHMC, 5 x 10° samples, u = (—2,0,2,4)T DHMC, 107 samples, u = (—2,2,0,4)T end for 4

# Final MH correction

E <+ U(z,q°)+ kP + K¢ (p°)

E0) U(x(o), qC(O))+ EPO0) 1 KC (pC(O))
z,q¢ < MHCorrection(E, E(")

return x, qc

)\ end function

e M-HMC evolves discrete and continuous variables in tandem, and is applicable to any distributions with mixed support.
e M-HMC with Laplace momentum 1is easy to implement, and introduces minimal overhead when compared with existing HMC methods.
e M-HMC is shown to be more efficient than strong baselines on challenging distributions with mixed support.




