
: Modern Markov Chain Monte Carlo Tools Built for Modern Hardware
Junpeng Lao, Christopher Suter, Ian Langmore, Cyril Chimisov, Ashish Saxena, Pavel Sountsov, Dave Moore, Rif A. Saurous, Matthew D. Hoffman, and Joshua V. Dillon

Key takeaways

What: is a highly flexible and modular framework for MCMC research and Bayesian inference, focused on peKeormance, and built
on top of TensorFlow and Jax.

How:
● Pervasive Data Parallelism (using “batch semantics” that leverage “single instruction, multiple data” (SIMD) instruction sets (“data

parallelism”)
● Requires only a simple Python callable that maps , where is a nested Python structure
● and that can be nested together to create new MCMC routines

Where: tfp.mcmc and tfp.experimental.mcmc

class TransitionKernel:

 @abc.abstractmethod

 def one_step(self, current_state, previous_kernel_results, seed=None):

 """Takes one step of the TransitionKernel."""

 ...

 def bootstrap_results(self, init_state):

 """Returns an object with the same type as returned by `one_step(...)[1]`."""

 ...

 @abc.abstractproperty

 def is_calibrated(self):

 """Returns `True` if Markov chain converges to specified distribution."""

 ...

def driver(kernel, initial_state):

 [] = results

 side_results = kernel.bootstrap_results(initial_state)

 for _ in range(num_samples):

 x, side_results = kernel.one_step(results[-1], side_results)

 results += [x]

 return results

results = driver(SomeKernel(target_log_prob_callable), x0)

's are composable

randomwalk_mh = tfp.mcmc.MetropolisHastings(

 inner_kernel=tfp.mcmc.UncalibratedRandomWalk(

 target_log_prob_fn=target_log_prob_fn,

 new_state_fn=new_state_fn))

hmc = tfp.mcmc.MetropolisHastings(

 inner_kernel=tfp.mcmc.UncalibratedHamiltonianMonteCarlo(

 target_log_prob_fn=target_log_prob_fn,

 step_size=step_size))

hmc_unbounded_with_tuning = tfp.mcmc.DualAveragingStepSizeAdaptation(

 tfp.mcmc.TransformedTransitionKernel(inner_kernel=hmc, bijector=bijector),

 target_accept_prob=.8, num_adaptation_steps=burnin)

Another design pattern we use is to have a make_kernel_fn that generates a TK

def make_kernel_fn(log_prob_fn):

 return tfp.mcmc.HamiltonianMonteCarlo(

 log_prob_fn, step_size=step_size, num_leapfrog_steps=10)

remc = tfp.mcmc.ReplicaExchangeMC(

 target_log_prob_fn=target_log_prob_fn,

 inverse_temperatures=inverse_temperatures,

 make_kernel_fn=make_kernel_fn)

examples

def trace_fn(state, adaptive_pkr):

 """`adaptive_pkr` is the previous kernel result."""

 transformed_pkr = adaptive_pkr.inner_results

 metropolis_pkr = transformed_pkr.inner_results

 return metropolis_pkr.is_accepted

Draw 500 samples, and trace the MH acceptance outcomes.

samples, is_accepted = tfp.mcmc.sample_chain(

 current_state=init_state,

 kernel=hmc_unbounded_with_tuning,

 num_burnin_steps=300, num_results=500,

 trace_fn=trace_fn)

cov_reducer = tfp.experimental.mcmc.CovarianceReducer()

covariance_estimate, _, _ = tfp.experimental.mcmc.sample_fold(

 current_state=init_state,

 kernel=hmc_unbounded_with_tuning,

 num_burnin_steps=300, num_results=500,

 trace_fn=trace_fn,

 reducers=cov_reducer,

)

smc_result = sample_sequential_monte_carlo(

 prior_log_prob_fn,

 likelihood_log_prob_fn,

 current_state,

 make_kernel_fn=make_rwmh_kernel_fn)

Highlights of some recent new features

New TransitionKernels

tfp.experimental.mcmc.GradientBasedTrajectoryLengthAdaptation

tfp.experimental.mcmc.PreconditionedHamiltonianMonteCarlo

tfp.experimental.mcmc.SampleDiscardingKernel

New sample drivers

tfp.experimental.mcmc.sample_sequential_monte_carlo

tfp.experimental.mcmc.sample_fold

`Reducer` that accumulates trace results at each sample.

tfp.experimental.mcmc.ProgressBarReducer

tfp.experimental.mcmc.ExpectationsReducer

tfp.experimental.mcmc.CovarianceReducer

tfp.experimental.mcmc.PotentialScaleReductionReducer

tfp.experimental.mcmc.TracingReducer

Discussion

Advantages and challenges of pervasive data
parallelism
Q: Why is the pervasive data parallelism advantageous?

Can’t we just use vectorizing function like
 or and wrap the TK

into a SIMD function?
A: Pervasive data parallelism opens new opportunities to

directly manipulate across “batches”, even during one
MCMC step. For example, we can flexibly implement
population-wise MCMC methods, or coupling MCMC
methods.

There are also significant challenges, for example,
in the implementation of the NUTS sampler.

Challenges of being modular
Onion-like nesting s are poweKeul, but
also create challenges when we try to access some
properties in one of the layer of the . We
have made some progress to make this process easier
with tfp.experimental.unnest

Contact

https://www.tensorflow.org/probability/
Reach out to us on our Google group if you have any
questions:

https://github.com/tensorflow/probability/tree/master/tensorflow_probability/python/mcmc
https://github.com/tensorflow/probability/tree/master/tensorflow_probability/python/experimental/mcmc
https://colab.research.google.com/gist/junpenglao/4580c8c19504af1e92972b1e287c97f9/tfp-mcmc-showcase.ipynb
https://colab.research.google.com/gist/junpenglao/4580c8c19504af1e92972b1e287c97f9/tfp-mcmc-showcase.ipynb
https://github.com/tensorflow/probability/blob/master/discussion/technical_note_on_unrolled_nuts.md
https://github.com/tensorflow/probability/blob/master/tensorflow_probability/python/experimental/unnest.py
https://www.tensorflow.org/probability/
mailto:tfprobability@tensorflow.org

