tfp.mcmc: Modern Markov Chain Monte Carlo Tools Built for Modern Hardware

Junpeng Lao, Christopher Suter, Ian Langmore, Cyril Chimisov, Ashish Saxena, Pavel Sountsov, Dave Moore, Rif A. Saurous, Matthew D. Hoffman, and Joshua V. Dillon

Key takeaways

What: tfp.mcmc is a highly flexible and modular framework for MCMC research and Bayesian inference, focused on performance, and built on top of TensorFlow and Jax.

How:

- Pervasive Data Parallelism (using "batch semantics" that leverage "single instruction, multiple data" (SIMD) instruction sets ("data parallelism")
- Requires only a simple Python callable that maps **inputs** -> **log_prob**, where **inputs** is a nested Python structure
- TransitionKernels and drivers that can be nested together to create new MCMC routines
- Where: tfp.mcmc and tfp.experimental.mcmc

TransitionKernel

class TransitionKernel:

@abc.abstractmethod

- def one_step(self, current_state, previous_kernel_results, seed=None):
 """Takes one step of the TransitionKernel."""
- • •
- def bootstrap_results(self, init_state):
- """Returns an object with the same type as returned by `one_step(...)[1]`."""
 ...
 @abc.abstractproperty
- def is calibrated(self):
- """Returns `True` if Markov chain converges to specified distribution."""

TransitionKernel's are composable

randomwalk_mh = tfp.mcmc.MetropolisHastings(inner_kernel=tfp.mcmc.UncalibratedRandomWalk(target_log_prob_fn=target_log_prob_fn, new_state_fn=new_state_fn))

hmc = tfp.mcmc.MetropolisHastings(

inner_kernel=tfp.mcmc.UncalibratedHamiltonianMonteCarlo(
 target_log_prob_fn=target_log_prob_fn,
 step size=step size))

hmc_unbounded_with_tuning = tfp.mcmc.DualAveragingStepSizeAdaptation(
 tfp.mcmc.TransformedTransitionKernel(inner_kernel=hmc, bijector=bijector),
 target_accept_prob=.8, num_adaptation_steps=burnin)

Another design pattern we use is to have a make_kernel_fn that generates a TK def make_kernel_fn(log_prob_fn):

return tfp.mcmc.HamiltonianMonteCarlo(log_prob_fn, step_size=step_size, num_leapfrog_steps=10) remc = tfp.mcmc.ReplicaExchangeMC(target_log_prob_fn=target_log_prob_fn, inverse_temperatures=inverse_temperatures, make_kernel_fn=make_kernel_fn)

drivers

def driver(kernel, initial_state):

[] = results

- side_results = kernel.bootstrap_results(initial_state)
- for _ in range(num_samples):

x, side_results = kernel.one_step(results[-1], side_results)
results += [x]

return results

results = driver(SomeKernel(target_log_prob_callable), x0)

driver examples

def trace_fn(state, adaptive_pkr): """`adaptive_pkr` is the previous kernel result.""" transformed_pkr = adaptive_pkr.inner_results metropolis_pkr = transformed_pkr.inner_results return metropolis_pkr.is_accepted # Draw 500 samples, and trace the MH acceptance outcomes. samples, is_accepted = tfp.mcmc.sample_chain(current_state=init_state, kernel=hmc_unbounded_with_tuning, num_burnin_steps=300, num_results=500, trace_fn=trace_fn)

cov_reducer = tfp.experimental.mcmc.CovarianceReducer()
covariance_estimate, _, _ = tfp.experimental.mcmc.sample_fold(
 current_state=init_state,
 kernel=hmc_unbounded_with_tuning,
 num_burnin_steps=300, num_results=500,
 trace_fn=trace_fn,
 reducers=cov_reducer,

smc_result = sample_sequential_monte_carlo(prior_log_prob_fn, likelihood_log_prob_fn, current_state, make kernel fn=make rwmh kernel fn)

Highlights of some recent new features

New TransitionKernels

tfp.experimental.mcmc.GradientBasedTrajectoryLengthAdaptation tfp.experimental.mcmc.PreconditionedHamiltonianMonteCarlo tfp.experimental.mcmc.SampleDiscardingKernel

Google Research

New sample drivers

tfp.experimental.mcmc.sample_sequential_monte_carlo
tfp.experimental.mcmc.sample_fold

`Reducer` that accumulates trace results at each sample

tfp.experimental.mcmc.ProgressBarReducer
tfp.experimental.mcmc.ExpectationsReducer
tfp.experimental.mcmc.CovarianceReducer
tfp.experimental.mcmc.PotentialScaleReductionReducer
tfp.experimental.mcmc.TracingReducer

Discussion

Advantages and challenges of pervasive data parallelism

Q: Why is the pervasive data parallelism advantageous? Can't we just use vectorizing function like tf.vectorized_map or jax.vmap and wrap the TK into a SIMD function?

A: Pervasive data parallelism opens new opportunities to directly manipulate across "batches", even *during* one MCMC step. For example, we can flexibly <u>implement</u> <u>population-wise MCMC methods</u>, or coupling MCMC methods.

There are also significant challenges, for example, in the <u>implementation of the NUTS sampler</u>.

Challenges of being modular

Onion-like nesting TransitionKernels are powerful, but also create challenges when we try to access some properties in one of the layer of the kernel_results. We have made some progress to make this process easier with <u>tfp.experimental.unnest</u>

Contact

https://www.tensorflow.org/probability/

Reach out to us on our Google group if you have any questions: <u>tfprobability@tensorflow.org</u>