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Key takeaways

What:  is a highly flexible and modular framework for MCMC research and Bayesian inference, focused on peKeormance, and built 
on top of TensorFlow and Jax.

How:
● Pervasive Data Parallelism (using “batch semantics” that leverage “single instruction, multiple data” (SIMD) instruction sets (“data 

parallelism”)
● Requires only a simple Python callable that maps , where  is a nested Python structure
●  and  that can be nested together to create new MCMC routines

Where: tfp.mcmc and tfp.experimental.mcmc

class TransitionKernel:

 @abc.abstractmethod

 def one_step(self, current_state, previous_kernel_results, seed=None):

   """Takes one step of the TransitionKernel."""

   ...

 def bootstrap_results(self, init_state):

   """Returns an object with the same type as returned by `one_step(...)[1]`."""

   ...

 @abc.abstractproperty

 def is_calibrated(self):

   """Returns `True` if Markov chain converges to specified distribution."""

   ...

def driver(kernel, initial_state):

 [] = results

 side_results = kernel.bootstrap_results(initial_state)

 for _ in range(num_samples):

   x, side_results = kernel.one_step(results[-1], side_results)

   results += [x]

 return results

results = driver(SomeKernel(target_log_prob_callable), x0)

's are composable

randomwalk_mh = tfp.mcmc.MetropolisHastings(

   inner_kernel=tfp.mcmc.UncalibratedRandomWalk(

       target_log_prob_fn=target_log_prob_fn,

       new_state_fn=new_state_fn))

hmc = tfp.mcmc.MetropolisHastings(

   inner_kernel=tfp.mcmc.UncalibratedHamiltonianMonteCarlo(

       target_log_prob_fn=target_log_prob_fn,

       step_size=step_size))

hmc_unbounded_with_tuning = tfp.mcmc.DualAveragingStepSizeAdaptation(

    tfp.mcmc.TransformedTransitionKernel(inner_kernel=hmc, bijector=bijector),

    target_accept_prob=.8, num_adaptation_steps=burnin)

# Another design pattern we use is to have a make_kernel_fn that generates a TK

def make_kernel_fn(log_prob_fn):

 return tfp.mcmc.HamiltonianMonteCarlo(

     log_prob_fn, step_size=step_size, num_leapfrog_steps=10)

remc = tfp.mcmc.ReplicaExchangeMC(

   target_log_prob_fn=target_log_prob_fn,

   inverse_temperatures=inverse_temperatures,

   make_kernel_fn=make_kernel_fn)

examples

def trace_fn(state, adaptive_pkr):

 """`adaptive_pkr` is the previous kernel result."""

 transformed_pkr = adaptive_pkr.inner_results

 metropolis_pkr = transformed_pkr.inner_results

 return metropolis_pkr.is_accepted

# Draw 500 samples, and trace the MH acceptance outcomes.

samples, is_accepted = tfp.mcmc.sample_chain(

   current_state=init_state,

   kernel=hmc_unbounded_with_tuning,

   num_burnin_steps=300, num_results=500,

   trace_fn=trace_fn)

cov_reducer = tfp.experimental.mcmc.CovarianceReducer()

covariance_estimate, _, _ = tfp.experimental.mcmc.sample_fold(

   current_state=init_state,

   kernel=hmc_unbounded_with_tuning,

   num_burnin_steps=300, num_results=500,

   trace_fn=trace_fn,

   reducers=cov_reducer,

)

smc_result = sample_sequential_monte_carlo(

   prior_log_prob_fn,

   likelihood_log_prob_fn,

   current_state,

   make_kernel_fn=make_rwmh_kernel_fn)

Highlights of some recent new features

# New TransitionKernels

tfp.experimental.mcmc.GradientBasedTrajectoryLengthAdaptation

tfp.experimental.mcmc.PreconditionedHamiltonianMonteCarlo

tfp.experimental.mcmc.SampleDiscardingKernel

# New sample drivers

tfp.experimental.mcmc.sample_sequential_monte_carlo

tfp.experimental.mcmc.sample_fold

# `Reducer` that accumulates trace results at each sample.

tfp.experimental.mcmc.ProgressBarReducer

tfp.experimental.mcmc.ExpectationsReducer

tfp.experimental.mcmc.CovarianceReducer

tfp.experimental.mcmc.PotentialScaleReductionReducer

tfp.experimental.mcmc.TracingReducer

Discussion

Advantages and challenges of pervasive data 
parallelism
Q: Why is the pervasive data parallelism advantageous? 

Can’t we just use vectorizing function like 
 or  and wrap the TK 

into a SIMD function?
A: Pervasive data parallelism opens new opportunities to 

directly manipulate across “batches”, even during one 
MCMC step. For example, we can flexibly implement 
population-wise MCMC methods, or coupling MCMC 
methods.

There are also significant challenges, for example, 
in the implementation of the NUTS sampler.

Challenges of being modular
Onion-like nesting s are poweKeul, but 
also create challenges when we try to access some 
properties in one of the layer of the . We 
have made some progress to make this process easier 
with tfp.experimental.unnest

Contact

https://www.tensorflow.org/probability/ 
Reach out to us on our Google group if you have any 
questions: 

https://github.com/tensorflow/probability/tree/master/tensorflow_probability/python/mcmc
https://github.com/tensorflow/probability/tree/master/tensorflow_probability/python/experimental/mcmc
https://colab.research.google.com/gist/junpenglao/4580c8c19504af1e92972b1e287c97f9/tfp-mcmc-showcase.ipynb
https://colab.research.google.com/gist/junpenglao/4580c8c19504af1e92972b1e287c97f9/tfp-mcmc-showcase.ipynb
https://github.com/tensorflow/probability/blob/master/discussion/technical_note_on_unrolled_nuts.md
https://github.com/tensorflow/probability/blob/master/tensorflow_probability/python/experimental/unnest.py
https://www.tensorflow.org/probability/
mailto:tfprobability@tensorflow.org

