
Comprehensive compilation
All ~ statements are conditioning
Parameters are initialized with uniform priors

Extending Stan for Deep Probabilistic Programming

(a) Generative scheme

def model(N, x):
z = sample(beta(1.,1.))
for i in range(0, N):
observe(bernoulli(z), x[i])

return z

(b) Comprehensive scheme

def model(N, x):
z = sample(uniform(0.,1.))
observe(beta(1.,1.), z)
for i in range(0, N):
observe(bernoulli(z), x[i])

return z

Fig. 2. Compiled coin model of Figure 1.

2.1 Generative translation
Generative PPLs are general-purpose languages extended with two probabilistic constructs [Gor-
don et al. 2014; Staton 2017; van de Meent et al. 2018]: sample(D) generates a sample from a
distribution D and factor(�) assigns a score � to the current execution trace. Typically, factor is
used to condition the model on input data [Tolpin et al. 2016]. We also introduce observe(D,�)
as a syntactic shortcut for factor(Dpdf(�)) where Dpdf denotes the density function of D. This
construct penalizes executions according to the score of � w.r.t. D which captures the assumption
that the observed data � follows the distribution D.

Compilation. Stan uses the same syntax v ~ D for both observed and latent variables. The distinc-
tion comes from the kind of the left-hand-side variable: observed variables are declared in the data
block, latent variables are declared in the parameters block. A straightforward generative transla-
tion compiles a statement v ~ D into v = sample(D) if v is a parameter or observe(D, v) if v is
data. For example, the compiled version of the Stan model of Figure 1 is shown in Figure 2a (using
Python syntax).

2.2 Non-generative features
In Stan, a model represents the unnormalized density of the joint distribution of the parameters
de�ned in the parameters block given the data de�ned in the data block [Carpenter et al. 2017;
Gorinova et al. 2019]. A Stan program can thus be viewed as a function from parameters and data
to the value of a special variable target that represents the log-density of the model. A Stan model
can be described using classic imperative statements, plus two special statements that modify the
value of target. The �rst one, target+= e , increments the value of target by e . The second one,
e ~ D, is equivalent to target+= Dlpdf(e) [Gorinova et al. 2019].
Unfortunately, these constructs allow the de�nition of models that cannot be translated using

the generative translation de�ned above. Speci�cally, Table 1 lists the Stan features that are not
handled correctly. A left expression is a case where the left-hand-side of ~ is an arbitrary expression.
The multiple updates feature occurs when the same parameter appears on the left-hand-side of
multiple ~ statements. An implicit prior occurs when there is no explicit ~ statement in the model
for a parameter. A target update is a direct update to the log-density of the model.

The “%” column of Table 1 indicates the percentage of Stan models that exercise each of the non-
generative features among the 502 �les in https://github.com/stan-dev/example-models. The
example column contains illustrative excerpts from such models. Since these are o�cial and long-
standing examples, we assume that they use the non-generative features on purpose. Comments in
the source code further corroborate that the programmer knowingly used the features. While some
features only occur in a minority of models, their prevalence is too high to ignore.

Extending Stan for Deep Probabilistic Programming

(a) Generative scheme

def model(N, x):
z = sample(beta(1.,1.))
for i in range(0, N):
observe(bernoulli(z), x[i])

return z

(b) Comprehensive scheme

def model(N, x):
z = sample(uniform(0.,1.))
observe(beta(1.,1.), z)
for i in range(0, N):
observe(bernoulli(z), x[i])

return z

Fig. 2. Compiled coin model of Figure 1.

2.1 Generative translation
Generative PPLs are general-purpose languages extended with two probabilistic constructs [Gor-
don et al. 2014; Staton 2017; van de Meent et al. 2018]: sample(D) generates a sample from a
distribution D and factor(�) assigns a score � to the current execution trace. Typically, factor is
used to condition the model on input data [Tolpin et al. 2016]. We also introduce observe(D,�)
as a syntactic shortcut for factor(Dpdf(�)) where Dpdf denotes the density function of D. This
construct penalizes executions according to the score of � w.r.t. D which captures the assumption
that the observed data � follows the distribution D.

Compilation. Stan uses the same syntax v ~ D for both observed and latent variables. The distinc-
tion comes from the kind of the left-hand-side variable: observed variables are declared in the data
block, latent variables are declared in the parameters block. A straightforward generative transla-
tion compiles a statement v ~ D into v = sample(D) if v is a parameter or observe(D, v) if v is
data. For example, the compiled version of the Stan model of Figure 1 is shown in Figure 2a (using
Python syntax).

2.2 Non-generative features
In Stan, a model represents the unnormalized density of the joint distribution of the parameters
de�ned in the parameters block given the data de�ned in the data block [Carpenter et al. 2017;
Gorinova et al. 2019]. A Stan program can thus be viewed as a function from parameters and data
to the value of a special variable target that represents the log-density of the model. A Stan model
can be described using classic imperative statements, plus two special statements that modify the
value of target. The �rst one, target+= e , increments the value of target by e . The second one,
e ~ D, is equivalent to target+= Dlpdf(e) [Gorinova et al. 2019].
Unfortunately, these constructs allow the de�nition of models that cannot be translated using

the generative translation de�ned above. Speci�cally, Table 1 lists the Stan features that are not
handled correctly. A left expression is a case where the left-hand-side of ~ is an arbitrary expression.
The multiple updates feature occurs when the same parameter appears on the left-hand-side of
multiple ~ statements. An implicit prior occurs when there is no explicit ~ statement in the model
for a parameter. A target update is a direct update to the log-density of the model.

The “%” column of Table 1 indicates the percentage of Stan models that exercise each of the non-
generative features among the 502 �les in https://github.com/stan-dev/example-models. The
example column contains illustrative excerpts from such models. Since these are o�cial and long-
standing examples, we assume that they use the non-generative features on purpose. Comments in
the source code further corroborate that the programmer knowingly used the features. While some
features only occur in a minority of models, their prevalence is too high to ignore.

Generative compilation
~ on parameters: sampling
~ on data: conditioning
Cannot handle all Stan models!

Extending Stan for Deep Probabilistic Programming

(a) Generative scheme

def model(N, x):
z = sample(beta(1.,1.))
for i in range(0, N):
observe(bernoulli(z), x[i])

return z

(b) Comprehensive scheme

def model(N, x):
z = sample(uniform(0.,1.))
observe(beta(1.,1.), z)
for i in range(0, N):
observe(bernoulli(z), x[i])

return z

Fig. 2. Compiled coin model of Figure 1.

2.1 Generative translation
Generative PPLs are general-purpose languages extended with two probabilistic constructs [Gor-
don et al. 2014; Staton 2017; van de Meent et al. 2018]: sample(D) generates a sample from a
distribution D and factor(�) assigns a score � to the current execution trace. Typically, factor is
used to condition the model on input data [Tolpin et al. 2016]. We also introduce observe(D,�)
as a syntactic shortcut for factor(Dpdf(�)) where Dpdf denotes the density function of D. This
construct penalizes executions according to the score of � w.r.t. D which captures the assumption
that the observed data � follows the distribution D.

Compilation. Stan uses the same syntax v ~ D for both observed and latent variables. The distinc-
tion comes from the kind of the left-hand-side variable: observed variables are declared in the data
block, latent variables are declared in the parameters block. A straightforward generative transla-
tion compiles a statement v ~ D into v = sample(D) if v is a parameter or observe(D, v) if v is
data. For example, the compiled version of the Stan model of Figure 1 is shown in Figure 2a (using
Python syntax).

2.2 Non-generative features
In Stan, a model represents the unnormalized density of the joint distribution of the parameters
de�ned in the parameters block given the data de�ned in the data block [Carpenter et al. 2017;
Gorinova et al. 2019]. A Stan program can thus be viewed as a function from parameters and data
to the value of a special variable target that represents the log-density of the model. A Stan model
can be described using classic imperative statements, plus two special statements that modify the
value of target. The �rst one, target+= e , increments the value of target by e . The second one,
e ~ D, is equivalent to target+= Dlpdf(e) [Gorinova et al. 2019].
Unfortunately, these constructs allow the de�nition of models that cannot be translated using

the generative translation de�ned above. Speci�cally, Table 1 lists the Stan features that are not
handled correctly. A left expression is a case where the left-hand-side of ~ is an arbitrary expression.
The multiple updates feature occurs when the same parameter appears on the left-hand-side of
multiple ~ statements. An implicit prior occurs when there is no explicit ~ statement in the model
for a parameter. A target update is a direct update to the log-density of the model.

The “%” column of Table 1 indicates the percentage of Stan models that exercise each of the non-
generative features among the 502 �les in https://github.com/stan-dev/example-models. The
example column contains illustrative excerpts from such models. Since these are o�cial and long-
standing examples, we assume that they use the non-generative features on purpose. Comments in
the source code further corroborate that the programmer knowingly used the features. While some
features only occur in a minority of models, their prevalence is too high to ignore.

Extending Stan for Deep Probabilistic Programming

(a) Generative scheme

def model(N, x):
z = sample(beta(1.,1.))
for i in range(0, N):
observe(bernoulli(z), x[i])

return z

(b) Comprehensive scheme

def model(N, x):
z = sample(uniform(0.,1.))
observe(beta(1.,1.), z)
for i in range(0, N):
observe(bernoulli(z), x[i])

return z

Fig. 2. Compiled coin model of Figure 1.

2.1 Generative translation
Generative PPLs are general-purpose languages extended with two probabilistic constructs [Gor-
don et al. 2014; Staton 2017; van de Meent et al. 2018]: sample(D) generates a sample from a
distribution D and factor(�) assigns a score � to the current execution trace. Typically, factor is
used to condition the model on input data [Tolpin et al. 2016]. We also introduce observe(D,�)
as a syntactic shortcut for factor(Dpdf(�)) where Dpdf denotes the density function of D. This
construct penalizes executions according to the score of � w.r.t. D which captures the assumption
that the observed data � follows the distribution D.

Compilation. Stan uses the same syntax v ~ D for both observed and latent variables. The distinc-
tion comes from the kind of the left-hand-side variable: observed variables are declared in the data
block, latent variables are declared in the parameters block. A straightforward generative transla-
tion compiles a statement v ~ D into v = sample(D) if v is a parameter or observe(D, v) if v is
data. For example, the compiled version of the Stan model of Figure 1 is shown in Figure 2a (using
Python syntax).

2.2 Non-generative features
In Stan, a model represents the unnormalized density of the joint distribution of the parameters
de�ned in the parameters block given the data de�ned in the data block [Carpenter et al. 2017;
Gorinova et al. 2019]. A Stan program can thus be viewed as a function from parameters and data
to the value of a special variable target that represents the log-density of the model. A Stan model
can be described using classic imperative statements, plus two special statements that modify the
value of target. The �rst one, target+= e , increments the value of target by e . The second one,
e ~ D, is equivalent to target+= Dlpdf(e) [Gorinova et al. 2019].
Unfortunately, these constructs allow the de�nition of models that cannot be translated using

the generative translation de�ned above. Speci�cally, Table 1 lists the Stan features that are not
handled correctly. A left expression is a case where the left-hand-side of ~ is an arbitrary expression.
The multiple updates feature occurs when the same parameter appears on the left-hand-side of
multiple ~ statements. An implicit prior occurs when there is no explicit ~ statement in the model
for a parameter. A target update is a direct update to the log-density of the model.

The “%” column of Table 1 indicates the percentage of Stan models that exercise each of the non-
generative features among the 502 �les in https://github.com/stan-dev/example-models. The
example column contains illustrative excerpts from such models. Since these are o�cial and long-
standing examples, we assume that they use the non-generative features on purpose. Comments in
the source code further corroborate that the programmer knowingly used the features. While some
features only occur in a minority of models, their prevalence is too high to ignore.

Example

Compiling Stan to Generative Probabilistic Languages 
Guillaume Baudart (IBM), Javier Burroni (UMass Amherst), Martin Hirzel (IBM), Kiran Kate (IBM), Louis Mandel (IBM), Avraham Shinnar (IBM)

References
Baudart, Burroni, Hirzel, Kate, Mandel, Shinnar. Extending 
Stan for Deep Probabilistic Programming. arxiv:1810.00873.
Bingham, et al. Pyro: Deep Universal Probabilistic 
Programming. JMLR 2019.
Carpenter, et al. Stan: A probabilistic programming 
language.JSS 2017. 
Gorinova, Gordon, and Sutton. Probabilistic programming 
with densities in SlicStan. POPL 2019.
Staton. Commutative Semantics for Probabilistic 
Programming. ESOP 2017.

Stan
Declarative style
Very large community

Generative PPLs
Many instances: WebPPL, Pyro, ...
General purpose programming language 
with sample, observe, and factor

Contributions
Comprehensive compilation scheme
Correctness proof
A new Pyro backend for Stanc3
Extending Stan with explicit variational 
guides and neural networks

Benefits
Stan users have access to a new 
backend with different inference engines 
and new features
PPLs developers have access to a large 
number of models

G. Baudart, J. Burroni, M. Hirzel, K. Kate, L. Mandel, and A. Shinnar

data { int N; int<lower=0,upper=1> x[N]; }
parameters { real<lower=0,upper=1> z; }
model { z ~ beta(1, 1);

for (i in 1:N) x[i] ~ bernoulli(z); }

z x

Np(z | x1, . . . , xN )

Fig. 1. Biased coin model in Stan.

In addition, recent probabilistic languages o�er new features to program and reason about
complex models. Our compilation scheme combined with conservative extensions of Stan can
be used to make these bene�ts available to Stan users. As a proof of concept, this paper shows
how to extend Stan with support for deep probabilistic models by compiling Stan to Pyro. Besides
supporting neural networks, our Stan extension (dubbed DeepStan) also introduce a polymorphic
type system for Stan. This type system together with a tensor shape analysis allows programmers
to omit redundant tensor sizes of dimensions, leaving them to the compiler to deduce. DeepStan has
the following advantages: (1) Pyro is built on top of PyTorch [Paszke et al. 2017]. Programmers can
thus seamlessly import neural networks designed with the state-of-the-art API provided by PyTorch.
(2) Variational inference was central in the design of Pyro. Programmers can easily craft their own
inference guides to run variational inference on deep probabilistic models. (3) Pyro also o�ers
alternative inference methods, such as NUTS [Homan and Gelman 2014] (No U-Turn Sampler), an
optimized Hamiltonian Monte-Carlo (HMC) algorithm that is the preferred inference method for
Stan. We can thus validate the results of our approach against the original Stan implementation on
classic probabilistic models.

To summarize, this paper makes the following contributions:
(1) A comprehensive compilation scheme from Stan to a generative PPL (Section 2).
(2) A proof of correctness of the compilation scheme (Section 3).
(3) A type system to deduce the size and shape of Stan vectorized constructs (Section 4).
(4) A compiler from Stan extended with explicit variational inference guides and deep proba-

bilistic models to Pyro (Section 5).
The fundamental new result of this paper is to prove that every Stan program can be expressed as

a generative probabilistic program. Besides advancing the understanding of probabilistic program-
ming languages at a fundamental level, this paper aims to provide concrete bene�ts to both the
Stan community and the Pyro community. From the perspective of the Stan community, this paper
presents a new compiler back-end that unlocks additional capabilities while retaining familiar
syntax. From the perspective of the Pyro community, this paper presents a new compiler front-end
that unlocks a large number of existing real-world models as examples and benchmarks.
The code of our experimental compiler from extended Stan to Pyro is available at https://

github.com/deepppl/deepppl.

2 OVERVIEW
This section shows how to compile a declarative language that speci�es a joint probability distribu-
tion like Stan [Carpenter et al. 2017] to a generative PPL like Church, Anglican, or Pyro. Translating
Stan to a generative PPL also demonstrates that Stan’s expressive power is at most as large as that
of generative languages, a fact that was not clear before our paper.

As a running example, consider the biased coin model shown in Figure 1. This model has observed
variables xi , i 2 [1 : N ], which can be 0 for tails or 1 for heads, and a latent variable z 2 [0, 1] for
the bias of the coin. Coin �ips xi are independent and identically distributed (IID) and depend on z
via a Bernoulli distribution. The prior distribution of parameter z is Beta(1, 1).

G. Baudart, J. Burroni, M. Hirzel, K. Kate, L. Mandel, and A. Shinnar

data { int N; int<lower=0,upper=1> x[N]; }
parameters { real<lower=0,upper=1> z; }
model { z ~ beta(1, 1);

for (i in 1:N) x[i] ~ bernoulli(z); }

z x

Np(z | x1, . . . , xN )

Fig. 1. Biased coin model in Stan.

In addition, recent probabilistic languages o�er new features to program and reason about
complex models. Our compilation scheme combined with conservative extensions of Stan can
be used to make these bene�ts available to Stan users. As a proof of concept, this paper shows
how to extend Stan with support for deep probabilistic models by compiling Stan to Pyro. Besides
supporting neural networks, our Stan extension (dubbed DeepStan) also introduce a polymorphic
type system for Stan. This type system together with a tensor shape analysis allows programmers
to omit redundant tensor sizes of dimensions, leaving them to the compiler to deduce. DeepStan has
the following advantages: (1) Pyro is built on top of PyTorch [Paszke et al. 2017]. Programmers can
thus seamlessly import neural networks designed with the state-of-the-art API provided by PyTorch.
(2) Variational inference was central in the design of Pyro. Programmers can easily craft their own
inference guides to run variational inference on deep probabilistic models. (3) Pyro also o�ers
alternative inference methods, such as NUTS [Homan and Gelman 2014] (No U-Turn Sampler), an
optimized Hamiltonian Monte-Carlo (HMC) algorithm that is the preferred inference method for
Stan. We can thus validate the results of our approach against the original Stan implementation on
classic probabilistic models.

To summarize, this paper makes the following contributions:
(1) A comprehensive compilation scheme from Stan to a generative PPL (Section 2).
(2) A proof of correctness of the compilation scheme (Section 3).
(3) A type system to deduce the size and shape of Stan vectorized constructs (Section 4).
(4) A compiler from Stan extended with explicit variational inference guides and deep proba-

bilistic models to Pyro (Section 5).
The fundamental new result of this paper is to prove that every Stan program can be expressed as

a generative probabilistic program. Besides advancing the understanding of probabilistic program-
ming languages at a fundamental level, this paper aims to provide concrete bene�ts to both the
Stan community and the Pyro community. From the perspective of the Stan community, this paper
presents a new compiler back-end that unlocks additional capabilities while retaining familiar
syntax. From the perspective of the Pyro community, this paper presents a new compiler front-end
that unlocks a large number of existing real-world models as examples and benchmarks.
The code of our experimental compiler from extended Stan to Pyro is available at https://

github.com/deepppl/deepppl.

2 OVERVIEW
This section shows how to compile a declarative language that speci�es a joint probability distribu-
tion like Stan [Carpenter et al. 2017] to a generative PPL like Church, Anglican, or Pyro. Translating
Stan to a generative PPL also demonstrates that Stan’s expressive power is at most as large as that
of generative languages, a fact that was not clear before our paper.

As a running example, consider the biased coin model shown in Figure 1. This model has observed
variables xi , i 2 [1 : N ], which can be 0 for tails or 1 for heads, and a latent variable z 2 [0, 1] for
the bias of the coin. Coin �ips xi are independent and identically distributed (IID) and depend on z
via a Bernoulli distribution. The prior distribution of parameter z is Beta(1, 1).

G. Baudart, J. Burroni, M. Hirzel, K. Kate, L. Mandel, and A. Shinnar

z

decoder�

µ

Bernoulli

x

N

model p� (x | z)

z

Normal

encoder

µz,�z

�

x

N

guide q� (z | x)

networks {
Decoder decoder; Encoder encoder; }

data {
int nz;
int<lower=0, upper=1> x[28, 28]; }

parameters { real z[*]; }
model {
real mu[_, _];
z ~ normal(0, 1);
mu = decoder(z);
x ~ bernoulli(mu); }

guide {
real encoded[2, nz] = encoder(x);
real mu_z[*] = encoded[1];
real sigma_z[*] = encoded[2];
z ~ normal(mu_z, sigma_z); }

Fig. 13. Graphical models and DeepStan code of the Variational Auto-Encoder model and guide.

Neural networks can be used to capture intricate dynamics between random variables. An
example is the Variational Auto-Encoder (VAE) illustrated in Figure 13. A VAE learns a vector-space
representation z for each observed data point x (e.g., the pixels of an image) [Kingma and Welling
2013; Rezende et al. 2014]. Each data point x depends on the latent representation z in a complex
non-linear way, via a deep neural network: the decoder. The leftmost part of Figure 13 shows
the corresponding graphical model. The output of the decoder is a vector µ that parameterizes a
Bernoulli distribution over each dimension of x (e.g., each pixel is associated to a probability of
being present in the image).
The key idea of the VAE is to use variational inference to learn the latent representation. The

guide maps each x to a latent variable z via another neural network: the encoder. The middle part
of Figure 13 shows the graphical model of the guide. The encoder returns, for each input x , the
parameters µz and �z of a Gaussian distribution in the latent space. Then inference tries to learn
good values for the parameters � and �, simultaneously training the decoder and the encoder.

The right part of Figure 13 shows the corresponding code in DeepStan. A network is introduced
by the name of its class and an identi�er. This identi�er can then be used in subsequent blocks,
in particular the model block and the guide block. The network class must be implemented in
PyTorch and the associated variable must be a valid instance of the class.

Deducing shapes. Since model code spans both Stan and PyTorch, one challenge is to minimize
redundancy while checking for errors and generating e�cient code. As shown in Figure 13 we let
users elide some of the concrete tensor dimensions by writing the wildcards “_” and “*” instead.
The tensor shape analysis from Section 4 automatically �lls in the size and number of dimensions.

The following example illustrates how our analysis uses uni�cation to �gure out the type of
variable z in the VAE in Figure 13. The parameters block declares real z[*], which our analysis
represents with the generic type real[]� . But code generation needs concrete dimensions for
initializing z correctly. The analysis needs to derive those concrete dimensions elsewhere. The
statement z ~ normal(0, 1) yields no new information about the dimensions because it is auto-
vectorized. The declaration real encoded[2,nz] tells the analysis that variable encoded has type
real[2][nz], a nested array of dimensions 2 and nz. The assignment mu_z = encoded[1] uni�es
the type of mu_z with real[nz]. Finally, the statement z ~ normal(mu_z, sigma_z) uni�es the
type of zwith the type of mu_z, so now z has type real[nz]. So, in Figure 13, the compiler computes
the shape of parameters z (nz), mu (28, 28), mu_z and sigma_z (nz).

Is it possible to compile any Stan program 
to a generative probabilistic program?

Extensions: SVI guides and NN

Stochastic Variational Inference (SVI)
Explicit guides to specify the family of 
target distributions

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12

parameters {
real cluster;
real theta; }

model {
real mu;
cluster ~ normal(0, 1);
if (cluster > 0) mu = 20;
else mu = 0;
theta ~ normal(mu, 1); }

guide parameters {
real mc;
real m1; real m2;
real ls1; real ls2; }

guide {
cluster ~ normal(mc, 1);
if (cluster > 0) theta ~ normal(m1, exp(ls1));
else theta ~ normal(m2, exp(ls2)); }

Fig. 4. DeepStan code and histograms of the multimodal example using Stan, DeepStan with NUTS, and
DeepStan with VI.

Experiments were run on a MacBook Pro 6 cores i9 (2.9 GHz, 32 GB RAM). Stan �rst compiles the
model to C++, which takes signi�cant time, but the inference is impressively fast. In comparison,
the compilation from DeepStan to Pyro is quasi-instantaneous, but the Pyro version of NUTS is
slower. Remark that there is a new beta version of Pyro called NumPyro. We can expect pretty
di�erent performance results with this new version.
The last line compare the distribution inferred by Stan and DeepStan for the 32 parameters of

the 6 models. Each entry is the parameter with the maximal SKL averaged over 5 runs. A SKL
close to zero indicates that the distributions are very similar. We observe that in all cases the SKL
approaches 0 when the number of samples increases. These results empirically validate that our
translation from DeepStan to Pyro preserves the Stan semantics.

Explicit Variational Guide. The multimodal example shown in Figure 4 is a mixture of two
Gaussians with di�erent means but identical variance. The histograms in the left half of Figure 4
show that in both Stan and DeepStan, this example is particularly challenging for NUTS. Using
multiple chains, NUTS �nds the two modes, but the chains do not mix and the relative densities
are incorrect. This is a known limitation of HMC. As shown in the code of Figure 4 we can provide
a custom variational guide that will correctly infer the two modes (DeepStanSVI). Note, however,
that this approach requires a-priori knowledge about the shape of the true posterior.

C.2 Deep probabilistic models
Since Stan lacks support for deep probabilistic models, we could not use it as a baseline. Instead,
we compare the performance of the code generated by our compiler with hand-written Pyro code
on the VAE described in §3.2 and a simple Bayesian neural network.

VAE. Variational autoencoders were not designed as a predictive model but as a generative
model to reconstruct images. Evaluating the performance of a VAE is thus non-obvious. We use
the following experimental setting. We trained two VAEs on the MNIST dataset using VI: one
hand-written in Pyro, the other written in DeepStan. For each image in the test set, the trained
VAEs compute a latent representation of dimension 5. We then cluster these representations using
KMeans with 10 clusters. Then we measure the performance of a VAE with the pairwise F1 metric:

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12

parameters {
real cluster;
real theta; }

model {
real mu;
cluster ~ normal(0, 1);
if (cluster > 0) mu = 20;
else mu = 0;
theta ~ normal(mu, 1); }

guide parameters {
real mc;
real m1; real m2;
real ls1; real ls2; }

guide {
cluster ~ normal(mc, 1);
if (cluster > 0) theta ~ normal(m1, exp(ls1));
else theta ~ normal(m2, exp(ls2)); }

Fig. 4. DeepStan code and histograms of the multimodal example using Stan, DeepStan with NUTS, and
DeepStan with VI.

Experiments were run on a MacBook Pro 6 cores i9 (2.9 GHz, 32 GB RAM). Stan �rst compiles the
model to C++, which takes signi�cant time, but the inference is impressively fast. In comparison,
the compilation from DeepStan to Pyro is quasi-instantaneous, but the Pyro version of NUTS is
slower. Remark that there is a new beta version of Pyro called NumPyro. We can expect pretty
di�erent performance results with this new version.
The last line compare the distribution inferred by Stan and DeepStan for the 32 parameters of

the 6 models. Each entry is the parameter with the maximal SKL averaged over 5 runs. A SKL
close to zero indicates that the distributions are very similar. We observe that in all cases the SKL
approaches 0 when the number of samples increases. These results empirically validate that our
translation from DeepStan to Pyro preserves the Stan semantics.

Explicit Variational Guide. The multimodal example shown in Figure 4 is a mixture of two
Gaussians with di�erent means but identical variance. The histograms in the left half of Figure 4
show that in both Stan and DeepStan, this example is particularly challenging for NUTS. Using
multiple chains, NUTS �nds the two modes, but the chains do not mix and the relative densities
are incorrect. This is a known limitation of HMC. As shown in the code of Figure 4 we can provide
a custom variational guide that will correctly infer the two modes (DeepStanSVI). Note, however,
that this approach requires a-priori knowledge about the shape of the true posterior.

C.2 Deep probabilistic models
Since Stan lacks support for deep probabilistic models, we could not use it as a baseline. Instead,
we compare the performance of the code generated by our compiler with hand-written Pyro code
on the VAE described in §3.2 and a simple Bayesian neural network.

VAE. Variational autoencoders were not designed as a predictive model but as a generative
model to reconstruct images. Evaluating the performance of a VAE is thus non-obvious. We use
the following experimental setting. We trained two VAEs on the MNIST dataset using VI: one
hand-written in Pyro, the other written in DeepStan. For each image in the test set, the trained
VAEs compute a latent representation of dimension 5. We then cluster these representations using
KMeans with 10 clusters. Then we measure the performance of a VAE with the pairwise F1 metric:

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12

parameters {
real cluster;
real theta; }

model {
real mu;
cluster ~ normal(0, 1);
if (cluster > 0) mu = 20;
else mu = 0;
theta ~ normal(mu, 1); }

guide parameters {
real mc;
real m1; real m2;
real ls1; real ls2; }

guide {
cluster ~ normal(mc, 1);
if (cluster > 0) theta ~ normal(m1, exp(ls1));
else theta ~ normal(m2, exp(ls2)); }

Fig. 4. DeepStan code and histograms of the multimodal example using Stan, DeepStan with NUTS, and
DeepStan with VI.

Experiments were run on a MacBook Pro 6 cores i9 (2.9 GHz, 32 GB RAM). Stan �rst compiles the
model to C++, which takes signi�cant time, but the inference is impressively fast. In comparison,
the compilation from DeepStan to Pyro is quasi-instantaneous, but the Pyro version of NUTS is
slower. Remark that there is a new beta version of Pyro called NumPyro. We can expect pretty
di�erent performance results with this new version.
The last line compare the distribution inferred by Stan and DeepStan for the 32 parameters of

the 6 models. Each entry is the parameter with the maximal SKL averaged over 5 runs. A SKL
close to zero indicates that the distributions are very similar. We observe that in all cases the SKL
approaches 0 when the number of samples increases. These results empirically validate that our
translation from DeepStan to Pyro preserves the Stan semantics.

Explicit Variational Guide. The multimodal example shown in Figure 4 is a mixture of two
Gaussians with di�erent means but identical variance. The histograms in the left half of Figure 4
show that in both Stan and DeepStan, this example is particularly challenging for NUTS. Using
multiple chains, NUTS �nds the two modes, but the chains do not mix and the relative densities
are incorrect. This is a known limitation of HMC. As shown in the code of Figure 4 we can provide
a custom variational guide that will correctly infer the two modes (DeepStanSVI). Note, however,
that this approach requires a-priori knowledge about the shape of the true posterior.

C.2 Deep probabilistic models
Since Stan lacks support for deep probabilistic models, we could not use it as a baseline. Instead,
we compare the performance of the code generated by our compiler with hand-written Pyro code
on the VAE described in §3.2 and a simple Bayesian neural network.

VAE. Variational autoencoders were not designed as a predictive model but as a generative
model to reconstruct images. Evaluating the performance of a VAE is thus non-obvious. We use
the following experimental setting. We trained two VAEs on the MNIST dataset using VI: one
hand-written in Pyro, the other written in DeepStan. For each image in the test set, the trained
VAEs compute a latent representation of dimension 5. We then cluster these representations using
KMeans with 10 clusters. Then we measure the performance of a VAE with the pairwise F1 metric:

Neural Networks
Neural networks defined in PyTorch
Deep probabilistic models: models using 
deep neural networks
Bayesian Networks: parameters of the 
network are random variables

Correctness proof
The semantics of Stan is based on an extension of [Gorinova et al. 2018]
The semantics of the generative PPL is based on [Staton 2017]
The compilation is formalized as a continuation passing style transformation

Proof:

Extending Stan for Deep Probabilistic Programming

{[return(e)]}� = �U . �JeK� (U )

{[letx = e1 in e2]}� = �U .

π
X
{[e1]}� (d�) ⇥ {[e2]}� [x �](U )

{[letx[e1,...,en] = e in e 0]}� = �U .

π
X
{[e]}� (d�) ⇥ {[e 0]}� [x (x[Je1K� ,...,JenK� ] �)](U )

{[forX (x in e1:e2) e3]}� = �U .let n1 = Je1K� in let n2 = Je2K� in

if n1 > n2 then �� (X)(U )

else
π
X
{[e3]}� [x n1](dX) ⇥ {[forX (x in n1 + 1:n2) e3]}� ,X(U )

{[whileX (e1) e2]}� = �U .if Je1K� = 0 then �� (X)(U )

else
π
X
{[e2]}� (dX) ⇥ {[whileX (e1) e2]}� ,X(U )

{[if (e) e1 else e2]}� = �U .if JeK , 0 then {[e1]}� (U ) else {[e2]}� (U )

{[sample(e)]}� = �U . JeK� (U )

{[factor(e)]}� = �U . exp(JeK� )

Fig. 5. Generative probabilistic language semantics

to the local binding, we integrates the next iteration of the loop over the set of all possible values
for the set of variables X.
The semantics of probabilistic operators is the following. The semantics of sample(e) is the

probability distribution JeK� (e.g.N(0, 1)). A type system omitted here for conciseness ensures that
we only sample from distributions. The semantics of factor(e) is the constant measure whose
value is exp(JeK) (this operator corresponds to score in [Staton 2017] but in log-scale, which is
common for numerical precision).

3.3 Comprehensive Translation
The key idea of the comprehensive translation is to �rst sample all parameters from priors with a
constant density that can be normalized away during inference (e.g., Uniform on bounded domains),
and then compile all ~ statements into observe statements.
The compilation functions for the parameters Pk (params(p)) and the model Sk (model(p)) are

both parameterized by a continuation k . The compilation of the entire program �rst compiles the
parameters to introduce the priors, then compiles the model, and �nally adds a return statement
for all the parameters. In continuation passing style:

C(p) = PSreturn(params(p))(model(p)) (params(p))

Parameters. In Stan, parameters can only be real, array of reals, vectors, or matrices, and are
thus de�ned on Rn with optional domain constraints (e.g. <lower=0>). For each parameter, the
prior is either the Uniform distribution on a bounded domain, or an improper prior with a constant
density w.r.t. the Lebesgue measure that we call ImproperUniform. The compilation function of the
parameters, de�ned Figure 6, thus produces a succession of sample expressions:

Pk (params(p)) = letx1 = D1 in . . . letxn = Dn in k

where for each parameter xi , Di is either Uniform or ImproperUniform.

Extending Stan for Deep Probabilistic Programming

{[return(e)]}� = �U . �JeK� (U )

{[letx = e1 in e2]}� = �U .

π
X
{[e1]}� (d�) ⇥ {[e2]}� [x �](U )

{[letx[e1,...,en] = e in e 0]}� = �U .

π
X
{[e]}� (d�) ⇥ {[e 0]}� [x (x[Je1K� ,...,JenK� ] �)](U )

{[forX (x in e1:e2) e3]}� = �U .let n1 = Je1K� in let n2 = Je2K� in

if n1 > n2 then �� (X)(U )

else
π
X
{[e3]}� [x n1](dX) ⇥ {[forX (x in n1 + 1:n2) e3]}� ,X(U )

{[whileX (e1) e2]}� = �U .if Je1K� = 0 then �� (X)(U )

else
π
X
{[e2]}� (dX) ⇥ {[whileX (e1) e2]}� ,X(U )

{[if (e) e1 else e2]}� = �U .if JeK , 0 then {[e1]}� (U ) else {[e2]}� (U )

{[sample(e)]}� = �U . JeK� (U )

{[factor(e)]}� = �U . exp(JeK� )

Fig. 5. Generative probabilistic language semantics

to the local binding, we integrates the next iteration of the loop over the set of all possible values
for the set of variables X.
The semantics of probabilistic operators is the following. The semantics of sample(e) is the

probability distribution JeK� (e.g.N(0, 1)). A type system omitted here for conciseness ensures that
we only sample from distributions. The semantics of factor(e) is the constant measure whose
value is exp(JeK) (this operator corresponds to score in [Staton 2017] but in log-scale, which is
common for numerical precision).

3.3 Comprehensive Translation
The key idea of the comprehensive translation is to �rst sample all parameters from priors with a
constant density that can be normalized away during inference (e.g., Uniform on bounded domains),
and then compile all ~ statements into observe statements.
The compilation functions for the parameters Pk (params(p)) and the model Sk (model(p)) are

both parameterized by a continuation k . The compilation of the entire program �rst compiles the
parameters to introduce the priors, then compiles the model, and �nally adds a return statement
for all the parameters. In continuation passing style:

C(p) = PSreturn(params(p))(model(p)) (params(p))

Parameters. In Stan, parameters can only be real, array of reals, vectors, or matrices, and are
thus de�ned on Rn with optional domain constraints (e.g. <lower=0>). For each parameter, the
prior is either the Uniform distribution on a bounded domain, or an improper prior with a constant
density w.r.t. the Lebesgue measure that we call ImproperUniform. The compilation function of the
parameters, de�ned Figure 6, thus produces a succession of sample expressions:

Pk (params(p)) = letx1 = D1 in . . . letxn = Dn in k

where for each parameter xi , Di is either Uniform or ImproperUniform.

Extending Stan for Deep Probabilistic Programming

Sequence. From the induction hypothesis and the semantics of GProb we have with �1 = Jstmt1K�
and �2 = Jstmt2K�1[target 0]:

{[Sk (stmt1; stmt2)]}� = {[SSk (stmt2) (stmt1)]}�
= �U .exp(�1(target)) ⇥ {[Sk (stmt2)]}�1[target 0](U )
= �U .exp(�1(target)) ⇥ exp(�2(target)) ⇥ {[k]}�2[target 0](U )
= �U .exp(�1(target) + �2(target)) ⇥ {[k]}�2[target 0](U )

On the other hand, from the semantics of Stan (Section 3.1), for any real value t we have:
JstmtK� [target t ] (target) = t + JstmtK� [target 0] (target)

Therefore: Jstmt1; stmt2K� (target) = �1(target) + �2(target) which conclude the proof. ⇤

Correctness.We now have all the elements to prove that the comprehensive compilation is correct.
That is, generated code yield the same un-normalized measure up to a constant factor that will be
normalized away by the inference.

T������ 3.3. For all Stan programs p, the semantics of the source program is equal to the semantics
of the compiled program up to a constant:

{[p]}D / {[C(p)]}D
P����. The proof is a direct consequence of Lemmas 3.1 and 3.2 and the de�nition of the two

semantics.

{[C(p)]}D / �U .

π
U
{[Sreturn(()) (model(p))]}D ,� ({()}) d�

= �U .

π
U
exp(Jmodel(p)KD ,� (target)) ⇥ {[return(())]}({()}) d�

= �U .

π
U
exp(Jmodel(p)KD ,� (target)) d�

= {[p]}D
⇤

4 VECTORIZATION
Vectorization is a style of programming where operations are applied to entire tensors (i.e, arrays,
vectors, or matrices) instead of individual elements. For example, in Stan, z ~ normal(0,1) lifts
the scalars 0 and 1 to the shape of z. Vectorization is both convenient (briefer code) and e�cient
(faster on vector units). Unfortunately, while the Stan compiler gets away with keeping shapes
and sizes implicit during compilation, our compiler to Pyro must make them explicit to generate
correct code. Thus, it needs a tensor shape analysis, described in this section. Explicit knowledge
of shapes and sizes also enables our compiler to check if types are correct and if not, report errors
earlier than the Stan compiler would.

Sizes of tensor variables can depend on each other, as in the code
real encoded[2,nz] = encoder(x); real mu_z[nz] = encoded[1];

Due to the assignment, mu_z must have the same size nz as the second dimension of encoded.
Given that it can be deduced, some users may prefer not to explicitly specify it by hand, as in

real encoded[2,nz] = encoder(x); real mu_z[_] = encoded[1];

Evaluation
Compiler implemented as a fork of Stanc3
Tested based on the 97 Stan models provided by PosteriorDB
96 models are compiling (the 1 error also fails to compile with Stan 3)
Inference runs on 77 models
Yield distributions similar to Stan on 8 classic models

G. Baudart, J. Burroni, M. Hirzel, K. Kate, L. Mandel, and A. Shinnar

Table 1. Stan features: example, prevalence and compilation.

F������ % E������ C����������
Left expression 7.7 sum(phi) ~ normal(0, 0.001*N); observe(Normal(0.,0.001*N), sum(phi))

Multiple updates 3.9 phi_y ~ normal(0,sigma_py);
phi_y ~ normal(0,sigma_pt)

observe(Normal(0.,sigma_py), phi_y);
observe(Normal(0.,sigma_pt), phi_y)

Implicit prior 60.7 real alpha0;
/* missing �alpha0 ~ ...� */

alpha0 = sample(ImproperUniform())

Target update 16.3 target += -0.5 * dot_self(
phi[node1] - phi[node2]);

factor(-0.5 * dot_self(
phi[node1] - phi[node2])))

2.3 Comprehensive translation
The previous section illustrates that Stan is centered around the de�nition of target, not around
generating samples for parameters, which is required by generative PPLs. The idea of the com-
prehensive translation is to add an initialization step to generate samples for all the parameters
and compile all Stan ~ statements as observations. To initialize the parameters we draw from the
uniform distribution in the de�nition domain of the parameters. For the biased coin example, the
result of this translation is shown in Figure 2b: The parameter z is �rst sampled uniformly on its
de�nition domain and then conditioned with an observation.
The compilation column of Table 1 illustrates the translation of non-generative features. Left

expression and multiple updates are simply compiled into observations. Parameter initialization
uses the uniform distribution over its de�nition domain. For unbounded domains, we introduce
new distributions (e.g., ImproperUniform) with a constant density that can be normalized away
during inference. The target update is compiled into a factor which increases the log-probability
of the execution by the given number. The complete compilation scheme is detailed in Section 3.3.

Intuition of the correctness. The semantics of Stan as described in [Gorinova et al. 2019] is the
semantics of a classical imperative language that de�nes an environment containing, in particular,
the value of the special variable target: the unnormalized log-density of the model. On the other
hand, the semantics of a generative PPL as described in [Staton 2017] de�nes a kernel mapping an
environment to a measurable function. Our compilation scheme adds uniform initializations for all
parameters which comes down to the Lebesgue measure on the parameters space, and translates all
~ statements to observe statements. We can then show that a succession of observe statements
yields a distribution with the same log-density as the Stan semantics. The correctness proof is
detailed in Section 3.4.

2.4 Implementation
The comprehensive compilation scheme can be used to compile any Stan program to a generative
PPL leveraging the rich set of existing Stan models for testing and benchmarking. As a proof
of concept, we implemented a compiler from Stan to Pyro [Bingham et al. 2019], a probabilistic
programming language in the line of WebPPL.

Vectorization. Compiling Stan to Pyro also raises the problem of automatic vectorization. In
Stan, expressions are automatically vectorized. For instance, the statement z ~ normal(0, 1)
automatically lifts the scalars 0 and 1 to the shape of z. To generate correct Pyro code, we need to
explicitly lift these constants: z = sample(normal(zeros(s), ones(s))) where s is the shape
of z, and the functions zeros and ones return arrays of zeros and ones, respectively. We thus
extend the Stan type system to infer dimensions and sizes (Section 4). Our type system allows the
programmer to omit redundant dimensions, leaving them to the compiler to deduce.

Stan features: example, prevalence and compilation 

https://arxiv.org/abs/1810.00873
https://github.com/mandel/stanc3
https://github.com/MansMeg/posteriordb

