Compiling Stan to Generative Probabilistic Languages Guillaume Baudart (IBM), Javier Burroni (UMass Amherst), Martin Hirzel (IBM), Kiran Kate (IBM), Louis Mandel (IBM), Avraham Shinnar (IBM)

Is it possible to compile any Stan program to a generative probabilistic program?

Stan

- Declarative style
- Very large community

Generative PPLs

- Many instances: WebPPL, Pyro, ...
- General purpose programming language with sample, observe, and factor

Contributions

- Comprehensive compilation scheme
- Correctness proof
- A new Pyro backend for Stanc3
- Extending Stan with explicit variational guides and neural networks

Benefits

- Stan users have access to a new backend with different inference engines and new features
- PPLs developers have access to a large number of models

Example


```
data { int N; int<lower=0,upper=1> x[N]; }
parameters { real<lower=0,upper=1> z; }
model { z ~ beta(1, 1);
       for (i in 1:N) x[i] ~ bernoulli(z); }
```

References

- Baudart, Burroni, Hirzel, Kate, Mandel, Shinnar. Extending Stan for Deep Probabilistic Programming. <u>arxiv:1810.00873</u>.
- Bingham, et al. Pyro: Deep Universal Probabilistic Programming. JMLR 2019.
- Carpenter, et al. Stan: A probabilistic programming language.JSS 2017.
- Gorinova, Gordon, and Sutton. Probabilistic programming with densities in SlicStan. POPL 2019.
- Staton. Commutative Semantics for Probabilistic Programming. ESOP 2017.

Generative compilation

- \sim on parameters: sampling
- \sim on data: conditioning
- Cannot handle all Stan models!

Stan features: example, prevalence and compilation

Feature	%	Example	COMPILATION
Left expression	7.7	sum(phi) ~ normal(0, 0.001*N);	<pre>observe(Normal(0.,0.001*N), sum(phi))</pre>
Multiple updates	3.9	phi_y ~ normal(0,sigma_py); phi_y ~ normal(0,sigma_pt)	<pre>observe(Normal(0.,sigma_py), phi_y); observe(Normal(0.,sigma_pt), phi_y)</pre>
Implicit prior	60.7	real alpha0; /* missing 'alpha0 ~' */	<pre>alpha0 = sample(ImproperUniform())</pre>
Target update	16.3	<pre>target += -0.5 * dot_self(phi[node1] - phi[node2]);</pre>	<pre>factor(-0.5 * dot_self(phi[node1] - phi[node2])))</pre>
Comprehensiv All ~ stateme Parameters a	/e cor ents ar	npilation The conditioning tialized with uniform priors	<pre>def model(N, x): z = sample(uniform(0.,1.)) observe(beta(1.,1.), z) for i in range(0 N):</pre>

Correctness proof

- The semantics of Stan is based on an exten
- The semantics of the generative PPL is base
- The compilation is formalized as a continuat

$$C(p) = \mathcal{P}_{\mathcal{S}_{return(params(p))}(model(p))}(params(p))$$

$$\mathcal{P}_k(params(p)) = let x_1 = D_1 in \dots let x_n = D_n in k$$

 $\{\![S_{\mathsf{return}(())}(\mathit{model}(p))]\!\}_{D,\theta}(\{()\}) d\theta$ • **Proof:** $\{\!\!\{C(p)\}\!\!\}_D$ $= \lambda U.$ $\exp(\llbracket model(p) \rrbracket_{D,\theta} (\texttt{target})) d\theta$ $\lambda U.$ — $[p]_D$

Evaluation

- Compiler implemented as a fork of <u>Stanc3</u>
- Tested based on the 97 Stan models provided by <u>PosteriorDB</u>
- 96 models are compiling (the 1 error also fails to compile with Stan 3)
- Inference runs on 77 models
- Yield distributions similar to Stan on 8 classic models

<pre>def model(N, x):</pre>				
<pre>z = sample(beta(1.,1.))</pre>				
<pre>for i in range(0, N):</pre>				
<pre>observe(bernoulli(z), x[i])</pre>				
return z				

observe	e(Deta(1.,1.), Z)	
for i	in range(0, N):	
obsei	<pre>rve(bernoulli(z),</pre>	x[i]
return	Z	

sion of [Gorinova et al. 2018]
ed on [Staton 2017]
tion passing style transformatio

ns(p))

 $exp(\llbracket model(p) \rrbracket_{D,\theta} (target)) \times \{\llbracket return(())\}(\{()\}) d\theta$

Extensions: SVI guides and NN

Stochastic Variational Inference (SVI)

model {

guide {

Neural Networks

Ne
De
de

Bayesian Networks: parameters of the network are random variables

```
networks -
 Decoder decoder; Encoder encoder; }
data {
 int nz;
 int<lower=0, upper=1> x[28, 28]; }
parameters { real z[*]; }
model {
 real mu[_, _];
 z \sim normal(0, 1);
 mu = decoder(z);
  x ~ bernoulli(mu); }
guide {
 real encoded[2, nz] = encoder(x);
  real mu_z[*] = encoded[1];
  real sigma_z[*] = encoded[2];
  z ~ normal(mu_z, sigma_z); }
```

Explicit guides to specify the family of target distributions

eural networks defined in PyTorch ep probabilistic models: models using ep neural networks