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Nested Conditioning

We explore how theory of mind can be implemented on high-uncertainty pursuit-evasion games using

Smartest Chaser

nested simulations in the form of probabilistic programs to reasoning about the plans of other agents. N e Figure 3 L.og mean log Chaser ) Runner
" model ' weights,log Z, and Fractional 15 |
~ runner ESS as a function of time for 0 N 1| TR
O " model . each sample budget. N \\\ 5
0 G > 5 \\ -
i : g — . @) . N—
] 3 Top Row log Z Rfor the middle = \ _3
b most model (left), and log Z© : | .
2 the outermost model, (right).
. ; (a) o O o ZC _ l ZIO i ch,k,lw}‘{,k,l
- ~ _ 54t = p ~ S\ & L L t W > 1.00 1.00 =N
query CHASER(z{,, ;) > Outer Model . i | oK 0.75 0.75 i& R e
$80AL ~ Uniform({:z:A, o ,ZUJ}) i i log Z? _ - Z log ( Z Z w?,k,l> . SN
2§ ~ RRT-PLAN(2S_1, 250,,) o aATTIER HERERPIL fi \BL =D = 0.50 0.50 S~
for [in1...L do " 0.25 0.25
r¥ 4wl <~ RUNNER (5, ;) | o | e
TSk e = TIME-VISIBLE(z%L, € ) Figure 1 Chaser and runner trajectories in the innermost, middlemost, and outermost models ottom Row € ractiona 0.00 0.00
Wit = exp(a TS aie) S where locations circled in red are the starting locations for each agent. We show posterior ESS for each varying K and L. 0 10 20 0 10 20
o , return € . wC - (L S° R distributions of L runner and naive chaser paths, when (K,L) = 128, 16 for a single 2 Time Step Time Step
. > p 8
Our probabilistic programs incorporate - T / resampled sample k. We condition the start and goal locations in this experiment (Ziil > wk’l)
variety of complex primitives such as field-of- ' ) ' ESS = (512_4) (2048,1) (GE) (128,16) (1(;8)(32’64) 4512
K L S : — : : ;
view calculations and path planners, which ) (zk=1 2t (wk’l)Q)
: .. .. Middle Model
enable us to model quasi-realistic scenarios in query RUNNER(Z7,, 1) g ' :
o P ~ Uniform({zy, ..,,)) Detection Experiments
a computationally tractable manner. 2R~ Uniform({zy, ..., 2})
1,7 ~ RRT-PLAN(Zgpspr; Tgoar) [ Chaser ] [ Runner ] Figure 4 Box plots showing quantiles
- N\ Ty, WS «~ NAIVE-CHASER(Z} 1) , K= 512 L= 4 ith for 1
query EPISODE(Zg 1) > Episode model TR — TIME-VISIBLE(z® -, {2€., ,75}) Naive Runner Smarter Runner | . Ny : with respect to restarts for log mean
for kinl. K do w\gsiLZXp<_& . | 1T WV 1it—1 T Detection Rate ‘ = ‘ w u\)u w (1D8e;;(8:)loi ga§6 We compare detection o “ “ 0 ﬂ WEightS for Varying K and L.
25" = Zram return 2% . R - 10C 5250 = €2 | rates in the full chaser- S 10 i !
: t:T Q \ g D g I -5
for £in2...7T do o runnermodel to = o 8 e %%%%%%%%ﬁ AL ' We show higher median log weights
) : : : S v Phad l .
for iclzl% ,1u;1’;; f Cd}? ASER(zSF ) p N V ! g = dOEtECt.H.m rates in three - 10 : ﬁ 10 31 and less outliers as K decreases and L
) o i (e ® simplified models increases, (K, L) = (16,128) results
forkinl... K do . . query NAIVE-CHASER(x; ) > Inner Model @ 6 Q :
~ Catecorical ([ %t W c . O .20 show that the log weights are less
a g S Wk S Teoa ~ Uniform({z,,...,z;}) | & (D . . 12
kW kW e SR T Discussion These 4 = b h draw less K ]
ck Lk Ca 1 L T ~ RRT-PLAN( T T o 10 robust when we draw less SdIllples.
€T w, = x o w t:T ( t—1> GOAL) > A ) o . O
Lit 1 Lt K 2k It{ return i<, 1 Q Q scenarios illustrate that =
S return (z,.7, wr), .-, (&, wr) )L , é %{\ when the runner reasons g
- 10
‘ ‘ ‘ ‘ ‘ ‘ ‘ more deeply, he evades ~ 10 g Conclusion We have introduced A
Detection Rate Detection Rate . onciusion e have 1introduce
4 -0 w w x S w w w _ more effectively: . . .
P I 21818 | N g 35 I nfe rence 49/>0) =0 ~98J\2§X% b u\%u (28/50) = 0.56 conversly when the n 20 a high-uncertainty variant of
b li I n - 5 :
. B = chaser reasons more : 10 pursuit evasmn. games where
- N - s 5 deeply, he intercepts > 0 __ a]g;gents a;e required to reason
e 4 «";. 4] - - _ about other agents' reasoning in
_ 7 v more effectively. 10 10 _ . .
m(x) = ~y(z)/ Q 0 P . order to accomplish their
X Q — = .
& n _
v(x) = exp(R(x))p(z) — 1 ® Futhermore, we show n 20 ® e . 'I' , respective goals.
Q DQ that a single, unified > 10 T ,HT ﬁﬁﬁ%ﬁ%ﬁ o
Z = Elexp(R(x))] %{\ inference algorithm can = 3 ’ :dgfu“f ? We emplrlcal.ly demons.trate that
\ \ \ " \ \ \ uncover a wide variety S nested Bayesian reasoning leads
. " . - 10 . .
o0 N n of intuitive, rational FO rational .behaV10rs, .
Ye( T, Ty Thop | T4—q) = : g I x cS:ts IEfer PR'§ |tnfer C's Next Z ?S N:xt behaviors or both the . K= 16 O L= 128 incorporating theory of mind
C R C C ~C C C sinterRloc @ arting roints rue % TS " outperforms non-nested models,
GXP[Oé(TVIS _TVIS)] p(ft;T |xt—1) p(ft;T |$t—1) p(ﬂfl;T) < C'sinferR'st+n .. C's Plan to Inter R True R Path runner and the chaser. S 10 !!!’3 ! @QQ“H% i b . .
o %% % LM% . . , and nested reasoning results in
> O é%%%%%%ﬁ@ " : lower-variance estimates of
Figure 2 We compare detection rates in the full chaser-runner model to detection rate in - 10 10 expected utility.

Time Step Time Step

L
, 1
Nested Importance Sampling wy = 17 g exp [R(fli‘fl%aiﬁ?;l)}
=1

- / https://arxiv.org/abs/1812.01569

three simplified models. Average detection rate over 50 restarts for each scenario. . /




