
•	 Apply the proposed evaluation to real-world scenarios with a single data realization and unknown truth. 
•	 Extend approach to general models with a mixture of regular and irregular parameters through conditioning and exploring 

generalizations of the Bernstein-von Mises Theorem. 
•	 Explore simple and automated indicators for the adequacy of the normal assumption on the true posterior.
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In probabilistic inference, credible intervals constructed from posterior samples provide ranges of likely 
values for continuous parameters of interest. Intuitively, an inference procedure is optimal if it produces 

the most precise posterior intervals that cover the true parameter value with the expected frequency in repeated experiments. 
We present theories and methods for automating posterior interval evaluation of inference performance in probabilistic 
programming using two metrics: 1.) truth coverage, and 2.) ratio of the empirical over the ideal interval widths. Demonstrating 
with inference on popular regression and state-space models, we show how the metrics provide effective comparisons between 
different inference procedures, and capture the effects of collinearity and model misspecification. Overall, we claim such 
automated interval evaluation can accelerate the robust design and comparison of probabilistic inference programs by directly 
diagnosing how accurately and precisely they can estimate parameters of interest.

Computing the proposed metrics based on posterior intervals can be automated for any probabilistic 
programming systems (4) that simulate data       and parameters      based on statistical models       

and priors, and infer the posterior distribution such that the likelihood function and the unnormalized posterior distribution are 
accessible. The Fisher information matrix can 
be computed via the hessian function on the 
log likelihood, through auto-differentiation. 
For non-asymptotic cases using the Laplace 
approximation, simply replace the likelihood 
with the unnormalized posterior distribution. 
We implement and demonstrate this 
automated evaluation in Gen (5).

Algorithm for Computing the Truth Coverage Rate Algorithm for Computing the Interval Width Ratios

Based on the statistical principle of evaluating Bayesian inference with frequentist properties (1,2), we compute 
two metrics for inference output in repeated experiments: 1.) posterior credible interval coverage of the true 

parameter value (90% intervals should cover the truth 90% of the time), and 2.) ratio of the empirical over the ideal interval widths 
(ratio of 1 indicates precise inference). The ideal interval width can be computed based on the asymptotic theorem: 

The Bernstein-von Mises Theorem (3). For regular models, the posterior distribution of continuous parameters in finite 
dimensions converges asymptotically, with increasing data, in distribution to Normal with mean at the true value     and covariance 
equal to the inverse of the Fisher information matrix     evaluated at     :

where      and                    ,                , and      is an             covariate matrix.  Here,     = 2,      = 30 
and the covariates      are generated independently, or with collinearity of 0.9 correlation

A popular nonlinear state-space model in the literature. Here we generate 
100 steps in time to capture both the periodic motion and nonlinear drift.

Infer the states      given the observations      using particle filters. 
Compare standard particle filters against one with rejuvenation 
moves on past states.

We infer       using Random Walk Metropolis-Hastings with two 
multivariate normal proposals:                                     :

1.	 Scott proposal (approximation to asymptotically optimal proposal):	
					   
where       is the covariance of multivariate normal prior on 

2.	 Naïve proposal (diagonal covariance matrix):

The diagonal terms of the asymptotic covariance               provide the ideal interval width for each parameter in the model.
In the non-asymptotic regime, the ideal interval width can be computed using the Laplace approximation where              is the 
Hessian of the log posterior distribution evaluated at     :
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Posterior interval evaluation identifies the expected effects of collinearity and misplaced prior on inference

Evaluation shows with the addition of rejuvenation, same performance is reached with far fewer particles

Evaluation quantifies how much faster the Scott proposal converges than the naïve proposal, under collinearity

where      and                    ,                    , and      is an            covariate matrix.  Here,     = 10,   
    = 100 and the covariates      are generated with collinearity of 0.95 correlation
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For purpose of demonstration, we infer       using Gibbs sampling, even though the posterior has a closed-form expression. 
Evaluation cases: 1.) Regular Gibbs sampling, 2.) Covariates generated with collinearity, and 3.) Prior location is misplaced
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