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In comparison to forward or backward KL (above), 
optimizing expected symmetric KL loss (below)

improves amortized sample efficiency (model above).

Statistically faithful sparsity and extended variational objective lead to 
improved inference amortization at reduced computational cost.
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Minimally faithful inverse sparsity for MNIST generator
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Structured Conditional Continuous Normalizing Flows for Efficient Amortized Inference in Graphical Models

Compile into graphical model
Faithfully invert graphical model
using NaMI algorithm [1]
Map inverse graph onto sparsity of
FFJORD [2] neural network layers
Train conditional continous [3] 
normalizing flow with symmetric KL

Automated compiler pipeline for
probabilistic programs (contributions [0])

Sparse Neural ODE
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Sparsity Structure

Encode sparsity      of inverse graph 
into each layer of      :

Continuous Normalizing Flow

Learn neural network       for volume
preserving, invertible particle flow

Improved Objective: Symmetric KL

Effects of Sparsity
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Comparable loss with < 50%
parameters, compared to FFJORD [2]

(model on the left)

Faithful sparsity is numerically stable 
 (no increase in integration steps)
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marginals of joint model
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for latents      to  

Stochastic inverse of a convolution layer
& output reconstructions

Stochastic inverse of full classifier


