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Single Gaussian analysis
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The probabalis�c analysis method is first shown for a synthe�c data set with low 
complexity. We used a synthe�c distance probability distrbu�on that is taken from the 
large simulated T4 lysozyme (T4L) test data [1], which resembles a single Gaussian.

From this P(r) we generated two noisy signal traces, one with favorable values Vgood and 
one with less ideal values Vpoor  for the modula�on depth, background decay rate, trace 
length and noise level.
The figure on the right shows the results of the Bayesian analysis for both cases. The top 
row depicts the marginalized posteriors for each parameter for the poor case. The first 
column shows the same for the good case. Dashed lines represents the ground truths. 
Though both analysis yield distribu�ons with modes close to the ground truth, the shorter 
and noisier trace clearly produces broader distribu�ons. The rest of the plot shows the 
marginalized posteriors of all parameter pairs for both cases.
While parameter posteriors show the outcome of the Bayesian analysis most directly, the 
most desired quan��es are the distance distribu�ons and the model fit. To show these we 

draw a small set of random parameter vectors θ(i) from the pooled MCMC chain samples 
and calculate distance distribu�ons and noise-free �me domain signals. 
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Distance distribu�ons

The pairwise marginalized posteriors present an
overwhelming amount of informa�on. To help with 
interpreta�on it is advantegeous to condense them to 
matrices of pairwise Peason correla�on coefficients.The interpreta�on of posterior-based ensembles of distribu�ons is essen�al for truly 

visualizing the informa�on extraced by the Bayesian analysis.
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Experimental data

When the ground-truth distribu�on is not known, it is important to compare the quality of 
models with different numbers of Gaussians. We analyzed a DEER trace that was collected 
experimentally to determine intersubunit distances in SthK, a tetrameric bacterial cyclic 

nucleo�de-gated (CNG) ion channel, with 1 to 4 Gaussians. 

Both the 1G and 2G model show systema�c devia�ons, even though they provide an apparently 
precise P(r). The �me-domain signal is well-described by both the 3G and 4G models. 
Though not ideal, yet useful in this situa�on, a formal approach for model comparison and to 
iden�fy overfi�ng is the calcula�on of the Bayes factors [3]. The Bayes factor is the ra�o of the 

posterior odds of two models:

Mul�modal distribu�ons and model selec�on
Synthe�c data

Most spin−spin distance distribu�ons encountered in DEER spectroscopy of proteins are asym- 

metric and mul�modal, and therefore poorly approximated by a single Gaussian. We analyzed a 

noisy �me trace generated from a bimodal distribu�on from the T4L test set, with two dis�nct 

modes, one significantly weaker than the other.

The other example shown here is a challenging, broad distribu�on with several poorly resolved 

modes of similar intensi�es. The Bayesian analysis was conducted using a three-Gaussian 

distribu�on model.

Challenges

Mixture models suffer from  a phenomenon known as label switching. For example, switching 

the labels of the two Gaussians in a two-Gauss distance distribu�on changes the loca�on in 

parameter space (θ1 ≠ θ2), but does not affect the distance distribu�on (P(θ1) = P(θ2)) nor the 

likelihood or the posterior. This renders the posterior mul�modal, complica�ng both the 

sampling and the analysis of the posterior. We take an approach similar to online relabeling [2] 

and enforce the constraints r0,1 ≤ r0,2 ≤ ··· ≤ r0,m a�er every sample to restrict the parameter 

space. Occasionally, due to theimposed constraints, chains get stuck in regions with r0,i ≈ r0,j, 

corresponding to the coalescence of two basis func�ons. 
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A log10Bi,j > 8 can be seen as a rela�vely strong indica�on for Mi 
over Mj. The Bayes factors Bm,1 for all m-Gauss models rela�ve to 
the 1G model, give preference for 3G and 4G. However, the 
rela�vely small Bayes factor log10B4,3 ≈ 5 indicates that the 4G  is 
star�ng to overfit the data.

Bi,j = 
p(V|Mi, I)

p(V|Mj, I)

Both, residuals and Bayes factors are required for complete analysis. While the former 
diagnoses systema�c misfi�ng, the la�er can iden�fy overfi�ng.
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Drawing from the posterior

We are interested in the posterior probability distribu�on of the parameter vector θ

condi�oned on the measured signal V, model M and any addi�onal informa�on I.  
The posterior can be expressed as

Here, p(V|θ, M, I) is the likelihood

which quan�fies the degree of fit between the data and the model.
For each parameter θi from the parameter vector we can write prior probability distribu�ons 
that can be combined

For the Markov chain Monte Carlo (MCMC) sampling from the posterior we use pymc3 [1] with 
a NUTS to generate a total of 8 MCMC chains. Each chain is ini�alized with different star�ng 
points and propagated for 5 000 steps to tune the sampler. The chains are then propagated for 
20 000 - 80 000 steps. Convergence is assessed via the rank-normalized split R� sta�s�c [2].

Markov chain Monte Carlo (MCMC) sampling

VM(t) = V0 · Vintra(t) · Vinter(t)

Prior distribu�ons
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P(r) =     ai Gauss(r; r0,i, wi)
m

i = 1

V ∼ normal(VM(ti), σ
21) 

θ = ({r0,i}, {wi}, {ai}, k, λ, V0, σ)

p(θ|V, M, I) ∝ p(V|θ, M, I) · p(θ|M, I)  

p(V|θ, M, I) = normal(V; VM(θ), σ21) 

DEER theory

The noise-free DEER signal is

where t is the posi�on of the pump pulse and V0 is the echo amplitude in absence of the pump 

pulse. Vintra(t) is the intramolecular modula�on func�on given by

with the modula�on depth λ and the normalized distribu�on P(r) of the spin-spin distance r. 

K(t,r) is called the dipolar kernel func�on and contains all the physics and quantum dynamics. 

Vinter(t) is the intermolecular modula�on func�on

where k is the decay rate constant.

One way to approximate the spin-spin distance distribu�on P(r) is a linear combina�on of 

normalized Gaussian basis func�ons:

where m is the number of Gaussians, ai the amplitudes, r0,i the centers of the Gaussians, and wi 

are the full widths at half maximum. 

In vector form, each measured data point can be wri�en as a random sample from a Gaussian 

distribu�on with center VM and covariance matrix σ21, where σ is the noise level: 

 

p(θ|M, I) =      p(θi|M,I) ∏
i
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Protein structure elucida�on with EPR
Protein structure determina�on

The func�on that a protein assumes depends to a large extent on its structure which 

makes protein structure determina�on of utmost importance for drug design. The human 

genome contains around 20 000 protein-encoding genes and yet, only the structures of a 

few of those proteins are known. Off par�cular interest is how proteins change their 

conforma�on when interac�ng with substrates. 

A variety of methods exist to determine the atomic structure, one of which is electron 

paramagne�c resonance (EPR) spectroscopy, which studies unpaired electrons. 

The strength of this coupling depends on the distance between the two electrons and is 

propor�onal to r-3. In DEER spectroscopy a train of microwave pulses is used to excite the 

unpaired electrons of the spin labels; these pulses usually have lengths in the nanoseconds 

range. If set up correctly, a signal is detected that is usually reffered to as echo. The posi�on 

of one of those pulses (the so-called pump pulse) is moved and the echo amplitude V(t) is 

recorded for every posi�on. 

The recorded �me domain trace exhibits modula�ons that depend on the dipolar couplings 

that are present. Similar to a Fourier transform, these oscilla�ons can be transformed into 

the distance domain, yielding a distance distribu�on P(r) of the interspin distance. This step 

cons�tutes an ill-posed, inverse problem that is usually solved with Tikhonov regulariza�on . 

DEER distance distribu�ons can then be combined with other structure determina�on 

methods to refine atomic structure models of proteins. 

Considering the role that DEER spectroscopy plays in structural biology, it is surprising that no 

method of reliably assessing uncertainty exists currently and most DEER data is indeed 

published without error bands. Here, we set out to quan�fy uncertainty in DEER 

spectrsocopy using a Bayesian approach. 
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The ul�mate goal of DEER spectroscopy is to obtain a probability distribu�on of the spin-
spin distance, ideally including some sort of uncertainty assessment. 

Principles of electron paramagne�c resonance

In the presence of an external magne�c field B0, an electron will align itself either parallel 
or an�parallel to the magne�c field. The orienta�on of the electron can be inverted by 

irradia�ng it with microwaves.  

The microwave energy (the frequency) that is required to flip the electron depends on its 

chemical environment, in par�cular what nuclei and other electrons are nearby. A�er 

excita�on the electron will slowly return to its ini�al state. This precession of the electron 

spin causes small fluctua�ons in the magne�c field that are picked up by coils that compose 

the detected signal.

DEER spectroscopy

Double electron-electron resonance (DEER) is an EPR experiment that measures the 

distance r between two spin labels that are usually a�ached to the protein through 

biochemical methods. They contain unpaired electrons that are coupled via the dipolar 

Bayesian Probabilis�c Analysis of DEER Spectroscopy Data


