### JointDistributions in TensorFlow Probability

Dan Piponi, Dave Moore, Christopher Suter, Junpeng Lao, Joshua V. Dillon

JointDistributions represent directed graphical models in TensorFlow Probability. They:

- Extend and generalize the interface of univariate **Distribution**s.
- Provide a shared representation for both sampling and log prob queries.
- Abstract multiple flavors of model specification behind a common interface.
- Support vectorized sampling and inference.

You can use them today to build models and run inference at scale, in TensorFlow or JAX.

# The code matches the math.

 $s \sim \text{InverseGamma}(3, 2)$  $m \sim \text{Normal}(0, 1)$  $x \sim \text{Normal}(m, s)$ 

```
simple_model = tfd.JointDistributionSequential([
    tfd.InverseGamma(3., 2.),  # s
    tfd.Normal(0., 1.),  # m
    lambda m, s: tfd.Normal(m, s), # x
])
# Samples are tuples of `Tensor`s.
s, m, x = simple model.sample()
```

### Different specifications, same statistical model.

named\_model = tfd.JointDistributionNamed(dict(

- s = tfd.InverseGamma(3., 2.),
- m = tfd.Normal(0., 1.),
- x = lambda m, s: tfd.Normal(m, s),
- ))

т

sample\_dict = named\_model.sample() # ==> { 's'=..., 'm'=..., 'x'=...}

### # Coroutine (most 'PPL-like') flavor. def model(): s = yield tfd InverseGamma(3., 2.) m = yield tfd.Normal(0., 1.) x = yield tfd.Normal(m, s) coroutine\_model = tfd JointDistributionCoroutineAutoBatched(model) s, m, x = coroutine\_model.sample() # a tuple

### A unified interface.

# Draw a prior sample and evaluate its log density.
s, m, x = simple\_model\_sample()
simple\_model\_log\_prob(s, m, x)

# Draw predictive samples given known `s`.
, m, x = simple model.sample(sample shape=[100], s=2.0)

# Inspect conditional distributions.
(\_, m\_dist, x\_dist), \_ = (
 simple\_model.sample\_distributions(s=2.0))

### Complicated things are simple.

@tfd.JointDistributionCoroutineAutoBatched
def latent\_dirichlet\_allocation():

n = yield tfd.Poisson(rate=avg\_doc\_length)

- theta = yield tfd Dirichlet(concentration=alpha)
- z = yield tfd.Multinomial(total\_count=n, probs=theta)
- w = yield tfd.Multinomial(total\_count=z, logits=beta)



## Google Research

### **Additional features**

- **Nesting is supported**: can define distributions over arbitrary nested data structures.
- AutoBatched variants transparently apply vectorized\_map (TF) or vmap (JAX) so that drawing multiple samples or evaluating log-densities in parallel 'just works'.
- NEW: bijectors can Split a vector-valued distribution, like a trainable flow, into a joint distribution over multiple RVs.

### Discussion

- JDs deliberately focus on deterministic control flow, for easy vectorization.
- JD models may refer to trainable parameters as tf.Variables, as in our LDA example. Variables are automatically tracked and may be accessed as alpha, beta = lda.trainable\_variables
- Most TFP inference APIs take a callable specifying a target\_log\_prob\_fn; joint distribution methods integrate seamlessly. TFP also provides utilities to generate fully-factorized or structured variational distributions from joint distribution models.
- Like most of TFP, joint distributions are supported in both Tensorflow and JAX backends: import tensorflow\_probability as tfp or from tensorflow\_probability.substrates

import jax as tfp

### Contact

### https://www.tensorflow.org/probability/

Reach out to us on our Google group with questions or feedback: <u>tfprobability@tensorflow.org</u>