
Dan Piponi, Dave Moore, Christopher Suter, Junpeng Lao, Joshua V. Dillon

simple_model = tfd.JointDistributionSequential([

 tfd.InverseGamma(3., 2.), # s

 tfd.Normal(0., 1.), # m

 lambda m, s: tfd.Normal(m, s), # x

])

Samples are tuples of `Tensor`s.

s, m, x = simple_model.sample()

A unified interface.

Draw a prior sample and evaluate its log density.

s, m, x = simple_model.sample()

simple_model.log_prob(s, m, x)

Draw predictive samples given known `s`.

_, m, x = simple_model.sample(sample_shape=[100], s=2.0)

Inspect conditional distributions.

(_, m_dist, x_dist), _ = (

 simple_model.sample_distributions(s=2.0))

s represent directed graphical models in TensorFlow Probability. They:

● Extend and generalize the interface of univariate s.

● Provide a shared representation for both sampling and log prob queries.

● Abstract multiple flavors of model specification behind a common interface.

● Support vectorized sampling and inference.

You can use them today to build models and run inference at scale, in TensorFlow or JAX.

Different specifications, same statistical model.

named_model = tfd.JointDistributionNamed(dict(

 s = tfd.InverseGamma(3., 2.),

 m = tfd.Normal(0., 1.),

 x = lambda m, s: tfd.Normal(m, s),

))

sample_dict = named_model.sample() # ==> {'s'=..., 'm'=..., 'x'=...}

Coroutine (most ‘PPL-like’) flavor.

def model():

 s = yield tfd.InverseGamma(3., 2.)

 m = yield tfd.Normal(0., 1.)

 x = yield tfd.Normal(m, s)

coroutine_model = tfd.JointDistributionCoroutineAutoBatched(model)

s, m, x = coroutine_model.sample() # a tuple

Complicated things are simple.

alpha = tfp.util.TransformedVariable(

 init_alpha, tfb.Softplus())

beta = tf.Variable(init_beta)

@tfd.JointDistributionCoroutineAutoBatched

def latent_dirichlet_allocation():

 n = yield tfd.Poisson(rate=avg_doc_length)

 theta = yield tfd.Dirichlet(concentration=alpha)

 z = yield tfd.Multinomial(total_count=n, probs=theta)

 w = yield tfd.Multinomial(total_count=z, logits=beta)

Additional features

● Nesting is supported: can define distributions

over arbitrary nested data structures.

● AutoBatched variants transparently apply

vectorized_map (TF) or vmap (JAX) so that

drawing multiple samples or evaluating

log-densities in parallel ‘just works’.

● NEW: bijectors can Split a vector-valued

distribution, like a trainable flow, into a joint

distribution over multiple RVs.

Discussion

● JDs deliberately focus on deterministic control flow,
for easy vectorization.

● JD models may refer to trainable parameters as
, as in our LDA example. Variables

are automatically tracked and may be accessed as

● Most TFP inference APIs take a callable specifying
a ; joint distribution methods
integrate seamlessly. TFP also provides utilities to
generate fully-factorized or structured variational
distributions from joint distribution models.

● Like most of TFP, joint distributions are supported
in both Tensorflow and JAX backends:

or

Contact

https://www.tensorflow.org/probability/
Reach out to us on our Google group with questions or
feedback:

https://www.tensorflow.org/probability/
mailto:tfprobability@tensorflow.org

