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simple_model = tfd.JointDistributionSequential([

    tfd.InverseGamma(3., 2.),       # s

    tfd.Normal(0., 1.),             # m

    lambda m, s: tfd.Normal(m, s),  # x

])

# Samples are tuples of `Tensor`s.

s, m, x = simple_model.sample()

A unified interface.

# Draw a prior sample and evaluate its log density.

s, m, x = simple_model.sample()

simple_model.log_prob(s, m, x)

# Draw predictive samples given known `s`.

_, m, x = simple_model.sample(sample_shape=[100], s=2.0)

# Inspect conditional distributions.

(_, m_dist, x_dist), _ = (

    simple_model.sample_distributions(s=2.0))

s represent directed graphical models in TensorFlow Probability. They:

● Extend and generalize the interface of univariate s.

● Provide a shared representation for both sampling and log prob queries.

● Abstract multiple flavors of model specification behind a common interface.

● Support vectorized sampling and inference.

You can use them today to build models and run inference at scale, in TensorFlow or JAX.

Different specifications, same statistical model.

named_model = tfd.JointDistributionNamed(dict(

    s = tfd.InverseGamma(3., 2.),

    m = tfd.Normal(0., 1.),

    x = lambda m, s: tfd.Normal(m, s),

))

sample_dict = named_model.sample()  #  ==> {'s'=..., 'm'=..., 'x'=...}

# Coroutine (most ‘PPL-like’) flavor.

def model():

  s = yield tfd.InverseGamma(3., 2.)

  m = yield tfd.Normal(0., 1.)

  x = yield tfd.Normal(m, s)

coroutine_model = tfd.JointDistributionCoroutineAutoBatched(model)

s, m, x = coroutine_model.sample()  # a tuple

Complicated things are simple.

alpha = tfp.util.TransformedVariable(

      init_alpha, tfb.Softplus())

beta = tf.Variable(init_beta)

@tfd.JointDistributionCoroutineAutoBatched

def latent_dirichlet_allocation():

  n = yield tfd.Poisson(rate=avg_doc_length)

  theta = yield tfd.Dirichlet(concentration=alpha)

  z = yield tfd.Multinomial(total_count=n, probs=theta)

  w = yield tfd.Multinomial(total_count=z, logits=beta)

Additional features

● Nesting is supported: can define distributions 

over arbitrary nested data structures.

● AutoBatched variants transparently apply 

vectorized_map (TF) or vmap (JAX) so that 

drawing multiple samples or evaluating 

log-densities in parallel ‘just works’.

● NEW: bijectors can Split a vector-valued 

distribution, like a trainable flow, into a joint 

distribution over multiple RVs.

Discussion

● JDs deliberately focus on deterministic control flow, 
for easy vectorization.

● JD models may refer to trainable parameters as 
, as in our LDA example. Variables 

are automatically tracked and may be accessed as 
  

● Most TFP inference APIs take a callable specifying 
a ; joint distribution methods 
integrate seamlessly. TFP also provides utilities to 
generate fully-factorized or structured variational 
distributions from joint distribution models.

● Like most of TFP, joint distributions are supported 
in both Tensorflow and JAX backends:

or 

Contact

https://www.tensorflow.org/probability/ 
Reach out to us on our Google group with questions or 
feedback: 

https://www.tensorflow.org/probability/
mailto:tfprobability@tensorflow.org

