

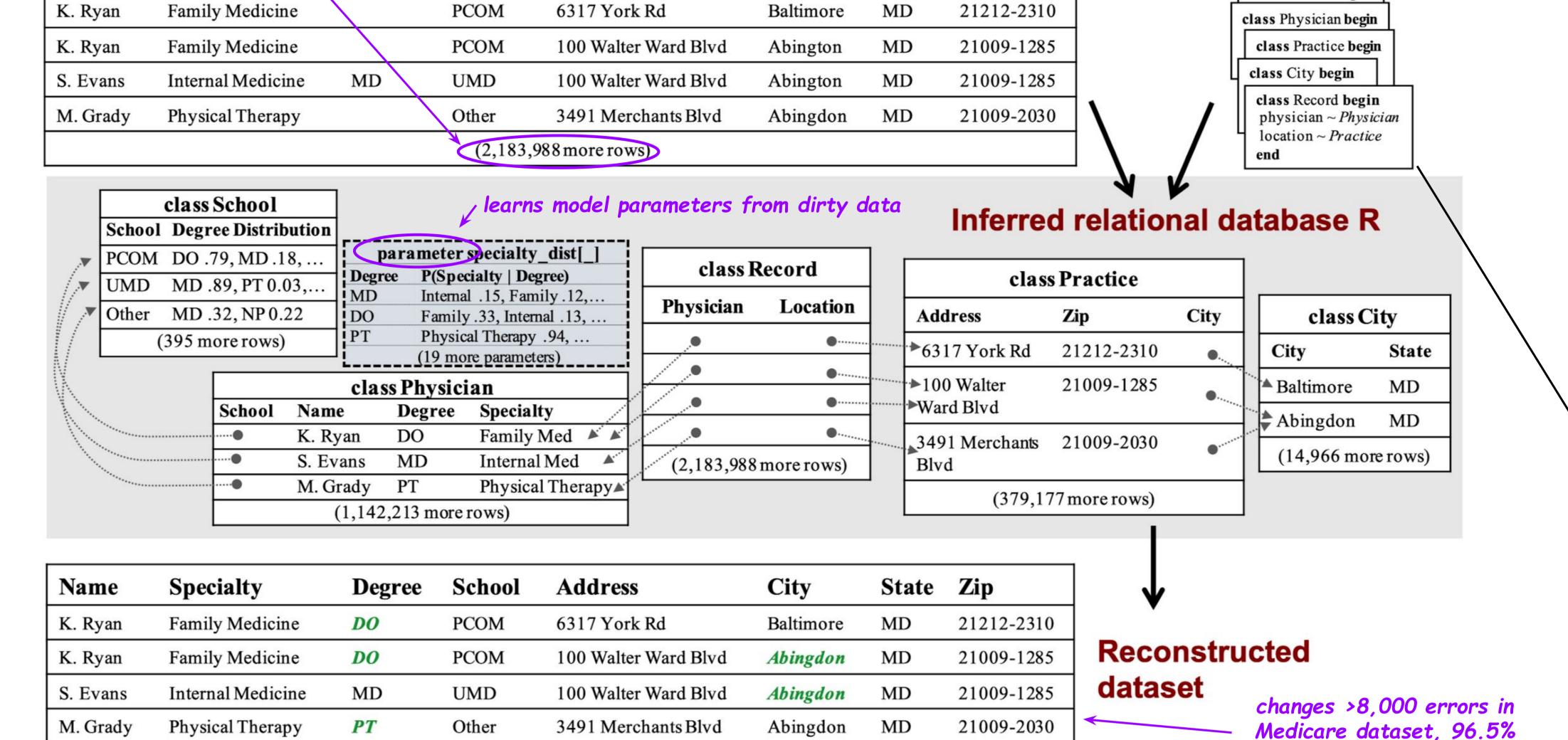
Name

PClean: Bayesian Data Cleaning at Scale via Domain-Specific Probabilistic Programming

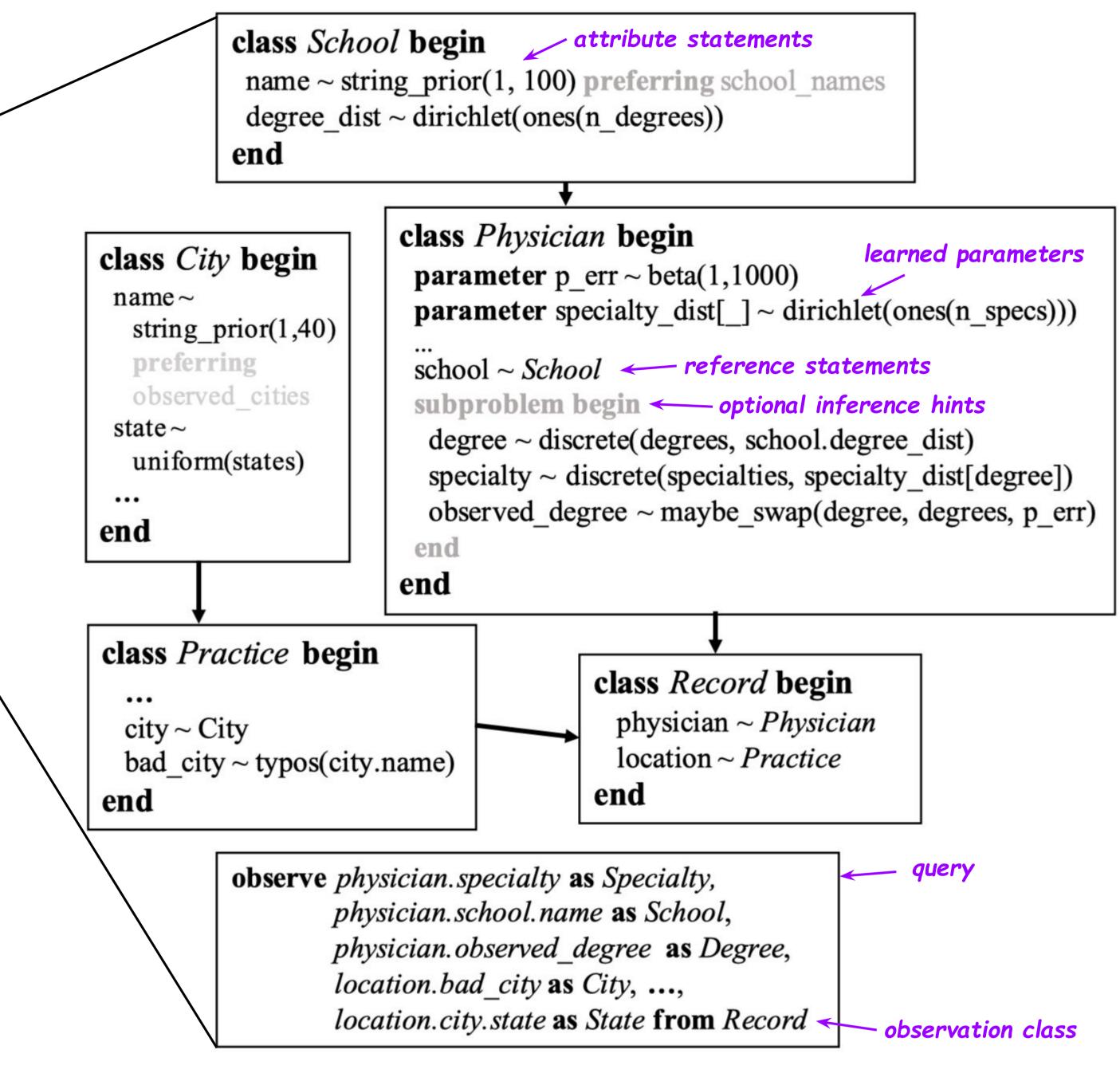
Alexander K. Lew, Monica Agrawal, David Sontag, Vikash K. Mansinghka MIT

1. Overview PClean is a domain-specific probabilistic programming language for

inferring ground-truth relational databases from flat, dirty datasets.


Scales to millions of rows

Dirty observations


Programmy language for an inferring ranguage for an inferring ground-truth relational databases from flat, dirty datasets.

City

State Zip

2. PClean Modeling Language

Equivalent view: in topological order, simulate infinite collection of objects from each class from Pitman-Yor

Left: A PClean program defines a relational schema for a database of objects underlying the dirty data, along with a probabilistic relational model over object attributes.

Below: PClean uses a domain-general non-parametric structure prior over the number of objects of each class, and over their relationships.

GENERATESKELETON($\mathcal{C}, |\mathbf{D}|$): \triangleright Create one C_{obs} object per observed record $\mathbf{S}_{C_{obs}} := \{1, \dots, |\mathbf{D}|\}$ \triangleright Generate a class after all referring classes:

for class $C \in \text{TopoSort}(\mathcal{C} \setminus \{C_{obs}\})$ do \triangleright Collect references to class C $\mathbf{Ref}_{\mathbf{S}}(C) := \{(r, Y) \mid r \in \mathbf{S}_{C'}, T(C'.Y) = C\}$ \triangleright Generate targets of those references $\mathbf{S}_{C} \sim \text{Generate DbjectSet}(C, \mathbf{Ref}_{\mathbf{S}}(C))$ \triangleright Assign reference slots pointing to Cfor object $r' \in \mathbf{S}_{C}$ do

for referring object $(r, Y) \in r'$ do r.Y := r' \triangleright Return the skeleton

GENERATEOBJECTSET $(C, \mathbf{Ref_S}(C))$: $s_C \sim Gamma(1,1); d_C \sim Beta(1,1)$ \triangleright Partition $\mathbf{Ref_S}(C)$ into disjoint co-referring subsets; each represents an object $\mathbf{S}_C \sim CRP(\mathbf{Ref_S}(C), s_C, d_C)$

return $\{\mathbf{S}_C\}_{C\in\mathcal{C}}, (r,Y)\mapsto r.Y$

3. PClean Inference Engine

Specialty

1) Initializes latent database with *per-observation* SMC; fixes mistakes with *per-object* rejuvenation

School

Address

Non-parametric prior admits a sequential representation (right), enabling
 SMC that incorporates one observation at a time

 $(2,183,988 \, \text{more rows})$

 Exchangeability of CRPs enables *per-object* rejuvenation moves: choose any object, and propose new parameters and reference slots — possibly creating new objects of other classes as their targets

2) Fast, data-driven SMC / block rejuvenation proposals created just-in-time by a *proposal compiler*

- Translates subproblem to a Bayes net
- For each pattern of missingness in the data, compiles efficient enumeration-based SMC proposals
- As needed, compiles enumeration-based rejuvenation proposals
- When possible exploits conjugacy for continuous parameters

3) User-specified *inference hints* help scale to large datasets and variable domains

o subproblem begin ... end:

Group adjacent statements into a *subproblem* which becomes an intermediate target in SMC. Smaller subproblems lead to more scalable enumerative proposals, at some cost to proposal quality

x ~ d(E,...,E) preferring E:

Specify a dynamically computed list of values on which posterior is likely to concentrate; proposal enumerates these, and the enumerative proposal is mixed with prior using an adaptive mixture weight

▶ Initialize empty database for observation $i \in \{1, ..., |\mathbf{D}|\}$ do $\Delta_i^{\mathbf{R}} \leftarrow \text{GENERATEINCREMENT}(\mathbf{R}^{(i-1)}, C_{obs})$ $\mathbf{R}^{(i)} \leftarrow \mathbf{R}^{(i-1)} \cup \Delta_i^{\mathbf{R}}$ $r \leftarrow$ the unique object of class C_{obs} in $\Delta_i^{\mathbf{R}}$ $d_i \leftarrow \{X \mapsto r.\mathbf{Q}(X), \ \forall X \in \mathcal{A}(\mathbf{D})\}$ $\mathbf{return} \; \mathbf{R} = \mathbf{R}^{(|\mathbf{D}|)}, \mathbf{D} = (d_1, \dots, d_{|\mathbf{D}|})$ GENERATEDBINCR($\mathbf{R}^{(i-1)}$, root class C): $\Delta \leftarrow \emptyset$; $r_* \leftarrow$ a new object of class C for each reference slot $Y \in \mathcal{R}(C)$ do $C' \leftarrow T(C.Y)$ for each object $r \in \mathbf{R}_{C'}^{(i-1)} \cup \Delta_{\mathbf{R}_{C'}}$ do $n_r \leftarrow |\{r' \mid r' \in \mathbf{R}^{(i-1)} \cup \Delta \wedge \exists \tau, r'.\tau = r\}|$ $r_*.Y \leftarrow r \text{ w.p. } \propto n_r - d_{C'}, \text{ or } \star \text{ w.p. } \propto$ $s_{C'} + d_{C'} | \mathbf{R}_{C'}^{(i-1)} \cup \Delta_{\mathbf{R}_{C'}} |$ if $r_*.Y = \star$ then $\Delta' \leftarrow \text{GENERATEDBINCR}(\mathbf{R}^{(i-1)} \cup \Delta, C')$ $\Delta \leftarrow \Delta \cup \Delta'$

 $r_*.Y \leftarrow \text{the unique } r' \text{ of class } C' \text{ in } \Delta'$

for each $X \in \mathcal{A}(C)$, in topological order do

 $r_* X \sim \phi_{C.X}(\cdot \mid \{r_* U\}_{U \in Pa(C.X)})$

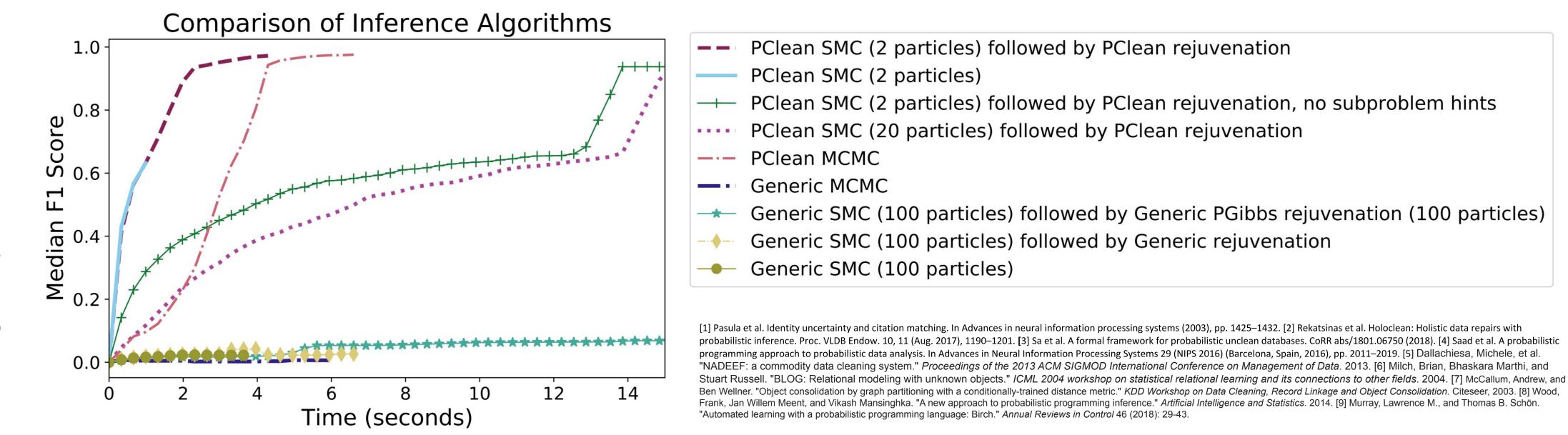
 $\textbf{return} \ \Delta \cup \{r_*\}$

GENERATEDATASET(Π , \mathbf{Q} , $|\mathbf{D}|$):

correctly, & imputes 1.5M

missing values

class School begin


Above: Unlike in general open-universe PPLs, PClean's model admits a sequential representation, in which one observation (and all new latent objects it is based on) is instantiated at each time step, enabling sequential Monte Carlo inference

4. Experiments & Results

PClean is expressive enough to model data cleaning benchmarks in <50 LoC, and unlike generic PPL inference (left), achieves SOTA accuracy + runtime compared to weighted logic + machine learning baselines.

Task	Metric	PClean	HoloClean	HoloClean	NADEEF	NADEEF + Manual
			(Unpublished)			Java Heuristics
Flights	F_1	0.90	0.64	0.41	0.07	0.90
	Time	3.1s	45.4s	32.6s	9.1s	14.5s
Hospital	F_1	0.91	0.90	0.83	0.84	0.84
	Time	4.5s	1m 10s	$1 \mathrm{m} \ 32 \mathrm{s}$	27.6s	22.8s
Rents	F_1	0.69	0.48	0.48	0	0.51
	Time	$1 \mathrm{m} \ 20 \mathrm{s}$	$20 \mathrm{m} \ 16 \mathrm{s}$	13m 43s	13s	7.2s

Table 1: Results of PClean and various baseline systems on three diverse cleaning tasks.

