
1. Imperative (used by Church, Pyro, Gen, Turning
and many others)

2. Declarative (used by BLOG and Bean Machine)

Declarative Imperative

1. Random variables are defined
with a separate code blocks.

2. Model does not provide an
order to draw samples from
each random variable.

3. Directed Acyclic Graph (DAG)
is explicit.

1. Random variables are defined
in one main code block.

2. Model provides an order to
draw samples from each
random variable.

3. Directed Acyclic Graph (DAG)
is implicit.

Hidden Markov Model (HMM)
mu, sigma, theta, x, y = {}, {}, {}, {}, {}

With Model():
for i in range(K):

mu[k] = Normal(f”mu[{k}]”, alpha, beta)
sigma[k] = Gamma(f”sigma[{k}]”, nu, rho)
theta[k] = Dirichlet(f”theta[{k}]”, kappa)

x[0] = Categorical(“x[0]”, init)
for i in range(1, N):

x[i] = Categorical(f”x[{i}], theta[x[i-1]])
y[i] = Normal(

f”y[{i}]”,
mu[x[i]],

 sigma[x[i]],
 observed =data[i]
)

@random_variable
def mu(k):

return Normal(alpha, beta)

@random_variable
def sigma(k):

return Gamma(nu, rho)

@random_variable
def theta(k):

return Dirichlet(kappa)

@random_variable
def x(i):

if i == 0:
return Categorical(init)

return Categorical(theta(x(i - 1))

@random_variable
def y(i):

return Normal(mu(x(i)), sigma(x(i)))

Single-Site Inference

Single-Site Metropolis Hastings

for each iteration of inference:
 for each unobserved random variable X:
 perform an MH update:
 propose a new value x′ for X using proposal Q
 update the world σ to σ′
 accept / reject using MH rule

Metropolis Hastings acceptance probability:

Key Features

● can be computed locally
○ the only update in probability is

from X and its immediate
children

● runtime complexity of one MH update
for X is proportional to the size of X’s
Markov blanket

● second-order gradient-based
inference methods are tractable

Inference Example: HMM

Bean Machine
● explicit DAG
● runtime of inference per variable

is proportional to size of its
Markov blanket for all models

● runtime per variable is constant
for HMM

● linear runtime complexity for
HMM

Imperative Languages
● no explicit dependency structure
● re-executes trace to resample

one variable for all models
● runtime per variable is linear for

HMM
● quadratic runtime complexity for

HMM

Bean Machine

Nazanin Tehrani, Nimar Arora, Yucen Li,
Kinjal Shah, David Noursi, Michael Tingley,

Narjes Torabi, Sepehr Masouleh, Eric Lippert,
and Erik Meijer

Metropolis Hastings For [x, mu, sigma]

propose new x′ for x and update the world
add x and x′ Markov blanket to Blanket
for mu in Blanket:
 propose new mu′ for mu and update the world
 add mu and mu′ Markov blanket to Blanket
for sigma in Blanket:
 propose new sigma′ for sigma and update the
world
 add sigma and sigma′ Markov blanket to Blanket
accept / reject using MH rule

Results

Method Hidden
States

Effective
Sample

Size

Block 25 109

Non-Block 25 89

Block 50 93

Non-Block 50 30

mh = CompositionalInference()
mh.add_sequential_proposer([x, mu,
sigma])
queries = [x(N-1)]
 + [theta(k) for k in
range(K)]
 + [mu(k) for k in range(K)]
 + [sigma(k) for k in
range(K)]
obs = {y(i): data[i] for i in
range(N)}
samples = mh.infer(queries, obs)

Composition Example: Annotation Model

mh = CompositionalInference({
 pi: SingleSiteNewtonianMonteCarlo(),
 theta: SingleSiteNewtonianMonteCarlo(),
 z: SingleSiteUniformMetropolisHastings()
})

Method Effective
Sample Size

Single-Site 622

Global 487

Seismic Event Model

@random_variable
def event_attr():
 return SeismicEventPrior()

@random_variable
def is_detected(station):
 prob = calculate_prob(station, event_attr())
 return Bernoulli(prob)

@random_variable
def det_attr(station):
 det_loc = calculate_dec(station, event_attr())
 return Laplace(det_loc, scale)

Custom
Proposers

● Domain Knowledge: invert the
detection attributes to find the most
likely attributes of an event

● Custom Proposer Idea: use a Gaussian
mixture model proposer around the
inverted attributes

class SeismicProposer(Proposer):

 # return proposed value and probability of
proposing
 def propose(self, variable, curr_world):
 det_attrs = [child.value for child in
variable.children
 if child.dependency_fn = det_attr]
 event_attrs = [seismic_invert(det) for det in
det_attrs]
 self.gmm = construct_gmm(event_attrs)
 new_value = self.gmm.sample()
 return new_value, self.gmm.log_prob(new_value)

 # return probability of proposing original value
 def post_process(self, variable, new_world):
 return self.gmm.log_prob(variable.value)

1

Blocking

● Single-site may not be suitable for
models with highly correlated
variables

● Block inference allows highly
correlated variables to be updated
together

Composition

● Each variable can have its own proposer
● Discrete variables do not need to be

integrated out

Inference

● Markov chain Monte Carlo
● Single-Site Metropolis Hastings
● Performed over worlds

A Declarative Probabilistic Programming
Language For Efficient Programmable Inference

100 iterations on an
HMM of length 200

