
1. Imperative (used by Church, Pyro, Gen, Turning 
and many others)

2. Declarative (used by BLOG and Bean Machine)

Declarative Imperative

1. Random variables are defined 
with a separate code blocks.

2. Model does not provide an 
order to draw samples from 
each random variable.

3. Directed Acyclic Graph (DAG) 
is explicit.

1. Random variables are defined 
in one main code block.

2. Model provides an order to 
draw samples from each 
random variable.

3. Directed Acyclic Graph (DAG) 
is implicit.

Hidden Markov Model (HMM)
mu, sigma, theta, x, y = {}, {}, {}, {}, {}

With Model():
for i in range(K):

mu[k] = Normal(f”mu[{k}]”, alpha, beta)
sigma[k] = Gamma(f”sigma[{k}]”, nu, rho)
theta[k] = Dirichlet(f”theta[{k}]”, kappa)

x[0] = Categorical(“x[0]”, init)
for i in range(1, N):

x[i] = Categorical(f”x[{i}], theta[x[i-1]])
y[i] = Normal(

f”y[{i}]”, 
mu[x[i]], 

             sigma[x[i]],
   observed =data[i]
 )

@random_variable
def mu(k):

return Normal(alpha, beta)

@random_variable
def sigma(k):

return Gamma(nu, rho)

@random_variable
def theta(k):

return Dirichlet(kappa)

@random_variable
def x(i):

if i == 0:
return Categorical(init)

return Categorical(theta(x(i - 1))

@random_variable
def y(i):

return Normal(mu(x(i)), sigma(x(i)))

Single-Site Inference

Single-Site Metropolis Hastings

for each iteration of inference:
    for each unobserved random variable X:
        perform an MH update:
        propose a new value x′ for X using proposal Q
        update the world σ to σ′
        accept / reject using MH rule

Metropolis Hastings acceptance probability:

Key Features

●                             can be computed locally
○ the only update in probability is 

from  X and its immediate 
children

● runtime complexity of one MH update 
for X is proportional to the size of X’s 
Markov blanket

● second-order gradient-based 
inference methods are tractable

Inference Example: HMM

Bean Machine
● explicit DAG
● runtime of inference per variable  

is proportional to size of its 
Markov blanket for all models

● runtime per variable is constant 
for HMM

● linear runtime complexity for 
HMM

Imperative Languages
● no explicit dependency structure
● re-executes trace to resample 

one variable for all models
● runtime per variable is linear for 

HMM
● quadratic runtime complexity for 

HMM

Bean Machine
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Metropolis Hastings For [x, mu, sigma]

propose new x′ for x and update the world
add x and x′ Markov blanket to Blanket
for mu in Blanket:
    propose new mu′ for mu and update the world
    add mu and mu′ Markov blanket to Blanket
for sigma in Blanket:
    propose new sigma′ for sigma and update the 
world
    add sigma and sigma′ Markov blanket to Blanket
accept / reject using MH rule

Results 

Method Hidden 
States

Effective 
Sample 

Size

Block 25 109

Non-Block 25 89

Block 50 93

Non-Block 50 30

mh = CompositionalInference()
mh.add_sequential_proposer([x, mu, 
sigma])
queries = [x(N-1)]
        + [theta(k) for k in 
range(K)]
        + [mu(k) for k in range(K)]
        + [sigma(k) for k in 
range(K)]
obs = {y(i): data[i] for i in 
range(N)}
samples = mh.infer(queries, obs)

Composition Example: Annotation Model

mh = CompositionalInference({
  pi: SingleSiteNewtonianMonteCarlo(),
  theta: SingleSiteNewtonianMonteCarlo(),
  z: SingleSiteUniformMetropolisHastings()
})

Method Effective 
Sample Size

Single-Site 622

Global 487

Seismic Event Model

@random_variable
def event_attr():
  return SeismicEventPrior()

@random_variable
def is_detected(station):
  prob = calculate_prob(station, event_attr())
  return Bernoulli(prob)

@random_variable
def det_attr(station):
  det_loc = calculate_dec(station, event_attr())
  return Laplace(det_loc, scale)

Custom 
Proposers

● Domain Knowledge: invert the 
detection attributes to find the most 
likely attributes of an event

● Custom Proposer Idea: use a Gaussian 
mixture model proposer around the 
inverted attributes 

class SeismicProposer(Proposer):

  # return proposed value and probability of 
proposing
  def propose(self, variable, curr_world):
    det_attrs = [child.value for child in 
variable.children
      if child.dependency_fn = det_attr]
    event_attrs = [seismic_invert(det) for det in 
det_attrs]
    self.gmm = construct_gmm(event_attrs)
    new_value = self.gmm.sample()
    return new_value, self.gmm.log_prob(new_value)
  
  # return probability of proposing original value
  def post_process(self, variable, new_world):
    return self.gmm.log_prob(variable.value)

1

Blocking

● Single-site may not be suitable for 
models with highly correlated 
variables

● Block inference allows highly 
correlated variables to be updated 
together

Composition

● Each variable can have its own proposer
● Discrete variables do not need to be 

integrated out

Inference 

● Markov chain Monte Carlo 
● Single-Site Metropolis Hastings 
● Performed over worlds

A Declarative Probabilistic Programming 
Language For Efficient Programmable Inference

100 iterations on an  
HMM of length 200


