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What is JAX?
JAX is a Python numerical computing library based on composable function transformations.

Examples transformations are:
grad(f) - Automatic differentiation
vmap(f) - Vectorized map
jit(f) - JIT compilation
pmap(f) - Distributed map

Transformations are implemented by tracing their input functions.

Challenge:
How do we build a probabilistic programming system on top of JAX that is fully compatible with JAX 
transformations?

Proposal: Oryx
Oryx adds new function transformations to JAX that enable a novel probabilistic programming 
system.
inverse(f) - Function inversion
log_prob(f) - Log density computation
harvest(f) - Tagging-based effect handling

 
 

Building an intermediate representation
Python functions are traced to build a JAX expression, or JAXPR.

JAXPRs are composed of JAX primitives, or the lowest level traceable operations in JAX.

def g(x, y):
  return (

 jnp.exp(jnp.tanh(x)),
 jnp.maximum(x, 0.) * y)

{ lambda  ; a b.
  let c = tanh a
      d = exp c
      e = max a 0.0
      f = mul e b
  in (d, f) }
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Propagation Algorithm

Log Density Transformation

def sample(key):
  x = random_variable(tfd.Normal(0., 1.))(key)
  return jnp.exp(x / 2.) + 2.

sample(random.PRNGKey(0)) # ==> 2.902198

log_prob(sample)(3.)  # ==> -0.22579134

Probabilistic Programs in Oryx
In Oryx, probabilistic programs are just JAX 
functions that take in a pseudorandom 
number generation key as their first input.

Propagating inverses and ILDJs
To convert a program into its log-density 
function, we can run a propagation on it 
similar to function inversion, but 
additionally keep track of inverse log-det 
Jacobians.

@jit
def f(x):
  return jnp.exp(x + 1.)

f(jnp.ones(5))

x f y

{ lambda  ; a.
  let b = add a 1.0
      c = exp b
  in (c,) }
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{
    a: ?,
    b: ?,
    c: 5.
}

expExecute rule for 
{
    a: ?,
    b: 1.609,
    c: 5.
}

tanhExecute rule for 

{
    a: 1.015,
    b: 1.609,
    c: 5.
}

By initializing the output nodes in the graphs to known 
values, we can “fill in” the missing values in the graph 
until we have values for the inputs, using rules of the 
following form for each JAX primitive:

def rule(invals, outvals):
  ...
  return new_invals, new_outvals

Effect Handling

Tagging-based effect system
JAX transformations require pure 
(side-effect free) functions as inputs. How 
can we find random samples located in a 
program?

We present a general-purpose function 
transformation that enables collecting 
and injecting tagged values into a 
program.
sow - tags values (semantically is identity)
harvest - “functionalizes”

TAG = 'intermediate'
def f(x):
  y = sow(x + 1., name='y', tag=TAG)
  return y ** 2
f(1.)  # ==> 4.

reap(f, tag=TAG)(1.)  # ==> {'y': 2.}

plant(f, tag=TAG)(dict(y=5.), 1.)  # ==> 25.

harvest(f, tag=TAG)({}, 1.)  # ==> (4., {‘y’: 2})
harvest(f, tag=TAG)(dict(y=5.), 1.)  # ==> (25., {})

Probabilistic Programming Transformations

With the base transformations available, 
we can now implement some 
PPL-specific transformations:

joint_sample - converts a program into 
one that returns latent random samples 
(based on harvest)

intervene - inserts values for random 
samples in probabilistic programs

Oryx transformations compose with JAX 
ones!

def latent_normal(key):
  z_key, x_key = random.split(key)
  z = random_variable(

tfd.Normal(0., 1.), name='z')(z_key)
  x = random_variable(

tfd.Normal(z, 1.), name='x')(x_key)
  return x
joint_sample(latent_normal)(

random.PRNGKey(0)) # ==> {'x': -1.1076, 'z': 0.14389}

log_prob(joint_sample(latent_normal))(

dict(x=0., z=0.)) # ==> -1.837877

intervene(latent_normal, x=5.)(

random.PRNGKey(0)) # ⇒ 5.

Applications
Because Oryx and JAX transformations are interoperable, we can easily do large scale Bayesian 
inference on GPUs and TPUs. Automatic inversion enables writing complex, trainable distributions 
for applications like normalizing flows. Finally, the function transformation paradigm enables 
applications like automatically constructing surrogate posteriors for variational inference.

Learn more at tensorflow.org/probability/oryx and try it yourself with pip install oryx.

http://tensorflow.org/probability/oryx

