
Automatic Function Inversion

Probabilistic Programming by Transformation in JAX
Sharad Vikram, Matthew D. Hoffman, Alexey Radul, James Bradbury, Matthew Johnson, Sergio Guadarrama

Google Research

What is JAX?
JAX is a Python numerical computing library based on composable function transformations.

Examples transformations are:
grad(f) - Automatic differentiation
vmap(f) - Vectorized map
jit(f) - JIT compilation
pmap(f) - Distributed map

Transformations are implemented by tracing their input functions.

Challenge:
How do we build a probabilistic programming system on top of JAX that is fully compatible with JAX
transformations?

Proposal: Oryx
Oryx adds new function transformations to JAX that enable a novel probabilistic programming
system.
inverse(f) - Function inversion
log_prob(f) - Log density computation
harvest(f) - Tagging-based effect handling

Building an intermediate representation
Python functions are traced to build a JAX expression, or JAXPR.

JAXPRs are composed of JAX primitives, or the lowest level traceable operations in JAX.

def g(x, y):
 return (

 jnp.exp(jnp.tanh(x)),
 jnp.maximum(x, 0.) * y)

{ lambda ; a b.
 let c = tanh a
 d = exp c
 e = max a 0.0
 f = mul e b
 in (d, f) }

a

tanh

exp

d

c

max

0.0

e b

mul

f

Propagation Algorithm

Log Density Transformation

def sample(key):
 x = random_variable(tfd.Normal(0., 1.))(key)
 return jnp.exp(x / 2.) + 2.

sample(random.PRNGKey(0)) # ==> 2.902198

log_prob(sample)(3.) # ==> -0.22579134

Probabilistic Programs in Oryx
In Oryx, probabilistic programs are just JAX
functions that take in a pseudorandom
number generation key as their first input.

Propagating inverses and ILDJs
To convert a program into its log-density
function, we can run a propagation on it
similar to function inversion, but
additionally keep track of inverse log-det
Jacobians.

@jit
def f(x):
 return jnp.exp(x + 1.)

f(jnp.ones(5))

x f y

{ lambda ; a.
 let b = add a 1.0
 c = exp b
 in (c,) }

Tracer

a

tanh

exp

c

b

{
 a: ?,
 b: ?,
 c: 5.
}

expExecute rule for
{
 a: ?,
 b: 1.609,
 c: 5.
}

tanhExecute rule for

{
 a: 1.015,
 b: 1.609,
 c: 5.
}

By initializing the output nodes in the graphs to known
values, we can “fill in” the missing values in the graph
until we have values for the inputs, using rules of the
following form for each JAX primitive:

def rule(invals, outvals):
 ...
 return new_invals, new_outvals

Effect Handling

Tagging-based effect system
JAX transformations require pure
(side-effect free) functions as inputs. How
can we find random samples located in a
program?

We present a general-purpose function
transformation that enables collecting
and injecting tagged values into a
program.
sow - tags values (semantically is identity)
harvest - “functionalizes”

TAG = 'intermediate'
def f(x):
 y = sow(x + 1., name='y', tag=TAG)
 return y ** 2
f(1.) # ==> 4.

reap(f, tag=TAG)(1.) # ==> {'y': 2.}

plant(f, tag=TAG)(dict(y=5.), 1.) # ==> 25.

harvest(f, tag=TAG)({}, 1.) # ==> (4., {‘y’: 2})
harvest(f, tag=TAG)(dict(y=5.), 1.) # ==> (25., {})

Probabilistic Programming Transformations

With the base transformations available,
we can now implement some
PPL-specific transformations:

joint_sample - converts a program into
one that returns latent random samples
(based on harvest)

intervene - inserts values for random
samples in probabilistic programs

Oryx transformations compose with JAX
ones!

def latent_normal(key):
 z_key, x_key = random.split(key)
 z = random_variable(

tfd.Normal(0., 1.), name='z')(z_key)
 x = random_variable(

tfd.Normal(z, 1.), name='x')(x_key)
 return x
joint_sample(latent_normal)(

random.PRNGKey(0)) # ==> {'x': -1.1076, 'z': 0.14389}

log_prob(joint_sample(latent_normal))(

dict(x=0., z=0.)) # ==> -1.837877

intervene(latent_normal, x=5.)(

random.PRNGKey(0)) # ⇒ 5.

Applications
Because Oryx and JAX transformations are interoperable, we can easily do large scale Bayesian
inference on GPUs and TPUs. Automatic inversion enables writing complex, trainable distributions
for applications like normalizing flows. Finally, the function transformation paradigm enables
applications like automatically constructing surrogate posteriors for variational inference.

Learn more at tensorflow.org/probability/oryx and try it yourself with pip install oryx.

http://tensorflow.org/probability/oryx

