1. (One View of) Programmable Inference: the Goal and the Challenge

The Goal: Automate Inference Algorithms from Declarative Specs
- **Target Distribution**
- **Proposal**
- **Importance Sampler**
- **Transition Proposal**
- **Generative Family**
- **Variational Family**

The Challenge: Densities
- Simple enough if each program supports:
 - Simulation
 - Density Evaluation
- But densities can:
 - Be intractable
 - Fail to exist (with respect to the usual reference measures)

Existing Approaches to Density in Probabilistic Programming
- **Trace-Based** (Gen, Pyro, ProbTorch, WebPPL)
 - Compute joint densities of traces of all primitive random choices made by prob. progs — easy multiplications
 - Proposal/variational family primitive choices must be in 1-1 correspondence with target distribution choices
 - Expressiveness rests on which primitives are available
- **Symbolic** (Hakaru, Stochastic, PSI, Blite et al; Mettman & Org)
 - Transform prob. progs into (unbiased estimators of) densities with respect to certain reference measures
 - Must “total” (exactly evaluate) possibly intractable densities that appear in denominators (e.g., proposals)
 - Supports some loops, but not general recursion

2. Our Approach: Inference Towers

- We do not require densities, but do require programs to be equipped with **internal proposals**

Why? Given any two valid tower-equipped programs over the same output space (F and G, with F << G), we’ll show how to automatically derive a valid importance sampler.

The Challenge: Automate Inference Algorithms from Declarative Specs

The Goal: Automate Inference Algorithms from Declarative Specs

The Challenge: Automate Inference Algorithms from Declarative Specs

3. Automatic Differentiation for Density Ratios of Tower-Equipped Probabilistic Programs

Given two probabilistic programs, F and G, their inference towers define a bijection between all rand() calls made by F* and G*, which are marginally equal to F and G:

F → *G*

4. Beyond Importance Sampling: SMC, MCMC, and Variational Inference

Possible to develop versions of SMC, MCMC, and SVI that use these towers, enabling expressive proposals and variational families.

Right: variational inference with a variational family that itself calls a recursive importance resampling procedure.