
Compositional Semantics for Probabilistic Programs with Exact Conditioning

We study the introduction of an exact conditioning operator (=:=) to a 
probabilistic language, for example

ys = gaussian_process(n=100, kernel=rbf)
for (i,obs) in observations:

ys[i] =:= obs

• Intuitive use
• Clean separation of model and observation (score statements would 

have to be interleaved with sampling in gaussian_process)
• Equational reasoning and possibly symbolic inference, e.g.

Probability-zero observations introduce many subtleties [Jules Jacobs‘21]. Borel‘s paradox can be restated as
„equivalent equations need not give equivalent conditions“.

• Available in e.g. [Hakaru, Infer.NET]
• Contrasts with likelihood-based scoring [Stan, WebPPL]

x = normal(0.0, 1.0)
y = normal(0.0, 1.0)
x =:= y

x = normal(0.0, 0.5)
y = x
# x = y holds exactly!

≈

Example: If x, y are independent and normally distributed, we obtain the following posteriors for x after conditioning 
[Proschan&Presnell’98]

x-y =:= 0 x/y =:= 1

Dario Stein, Sam Staton University of Oxford

Advantages of Exact Conditioning

Challenges: Semantics

When are two conditions interchangeable? Can we still reorder independent lines of the program if they may invoke conditions?
 Compositional conditioning needs semantics to show consistency, and justify program transformations.

We will develop such semantics, and prove the following desirable properties of exact conditioning:

a1 =:= a2; b1 =:= b2 b1 =:= b2; a1 =:= a2≈Commutativity:

a1 =:= a2; b1 =:= b2 (a1,b1) =:= (a2,b2)≈Aggregation:

a = normal(); a =:= 0 a = 0≈Initialization:

a =:= b; return a a =:= b; return b≈Substitution:

We develop a structural theory of conditioning based on program transformations (related to the symbolic disintegration of 
[Shan&Ramsey]). Conditioning is NOT about densities, limiting procedures or measure theory but only about dataflow properties:

An inference problem is a closed program of the form let (y,k) = f()  in k =:= obs; return y

An conditioning channel X  Y is an open 
conditioning program of the form let (y,k) = f(x) in k =:= obs; return y

We identify two conditioning channels if they are contextually equivalent (compute the same posteriors in all contexts)

This has a very general formulation in Markov categories [Fritz, Cho-Jacobs], which are an abstract formalism for 
stochastic computation. A glimpse of the relevant definitions:

Theorem: If C is a well-behaved Markov category, then conditioning channels modulo contextual equivalence compose in a 
well-defined way, forming a CD category Cond(C). The desirable properties hold in Cond(C).

Bonus: We obtain a graphical calculus for conditioning, where observations o become effects in Cond(C)

e.g. the graphical substitution law reads

Conclusion

The Cond construction provides general and compositional semantics for exact conditioning.
It has convenient formal properties and enables equational and graphical reasoning about conditioning programs.
• Assumption: we work in a Markov category with „well-behaved disintegrations“ [Shan&Ramsey‘17]. 
• Current examples: Discrete probability, and multivariate Gaussians (help develop more!)

We have implemented GaussianInfer, a toy language for Gaussian probability + exact conditioning, 
based on conditioning channels. Implementation in Python & F# [github.com/damast93/GaussianInfer]

Conditioning 
channel

Sequential 
composition

Parallel 
composition

Def: Conditional 
distribution

Def: Parameterized 
conditional

Using algebraic effects & abstract types: Exact conditioning (x=:=y) and boolean equality (x==y) have different formal 
status and cannot be confused, which helps clear up Borel‘s paradox.  

2d Kálmán filterRidge regression

Conditioning is idempotent:

Bonus: An algebraic axiomatization of contextual 
equivalence for GaussianInfer is available.

@damast93

[LICS‘21]

prior

posterior
(6 observations)


