tfp.mcmc: Modern Markov Chain Monte Carlo Tools Built for Modern Hardware

Junpeng Lao, Christopher Suter, Ian Langmore, Cyril Chimisov, Ashish Saxena, Pavel Sountsov, Dave Moore, Rif A. Saurous, Matthew D. Hoffman, and Joshua V. Dillon

Key takeaways

What: tfp.mcmc is a highly flexible and modular framework for MCMC research and Bayesian inference, focused on performance, and built on top of TensorFlow and Jax.

How:
- Pervasive Data Parallelism (using “batch semantics” that leverage “single instruction, multiple data” (SIMD) instruction sets (“data parallelism”)
- Requires only a simple Python callable that maps inputs -> log_prob, where inputs is a nested Python structure
- TransitionKernels and drivers that can be nested together to create new MCMC routines

Where: tfp.mcmc and tfp.experimental.mcmc

TransitionKernel

class TransitionKernel:

```python
@abc.abstractmethod
def one_step(self, current_state, previous_kernel_results, seed=None):
  """Takes one step of the TransitionKernel."""
  ...

def bootstrap_results(self, init_state):
  """Returns an object with the same type as returned by `one_step(...)`."""
  ...

@abc.abstractproperty
def is_calibrated(self):
  """Returns True if Markov chain converges to specified distribution."""
  ...
```

TransitionKernels’ are composable

```python
randomwalk_hmc = tfp.mcmc.Metropolised Hastings(
  inner_kernel=tfp.mcmc.UnCalibratedRandomWalk(  
    target_log_prob_fn=target_log_prob_fn,  
    new_state_fn=new_state_fn),
)

hmc = tfp.mcmc.Metropolised Hastings(  
  inner_kernel=tfp.mcmc.UnCalibratedHamiltonMonteCarlo(  
    target_log_prob_fn=target_log_prob_fn,  
    step_size=step_size),
)

hmc_unbounded_with_tuning = tfp.mcmc.DualAveragingStepSizeAdaptation(  
  tfp.mcmc.TransformedTransitionKernel(inner_kernel=hmc, bijector=bijector),  
  target_accept_prob=0.8, num_adaptation_steps=500)
```

drivers

def driver(kernel, initial_state):
 [] = results
 side_results = kernel.bootstrap_results(initial_state)
 for _ in range(num_samples):
 x, side_results = kernel.one_step(results[-1], side_results)
 results = [x]
 return results
 results = driver(SomeKernel(target_log_prob_callable), x0)

driver examples

def trace_fn(state, adaptive_pkr):
 """Adaptive_pkr is the previous kernel result."""
 transformed_pkr = adaptive_pkr.inner_results
 metastropolis_pkr = transformed_pkr.inner_results
 return metastropolis_pkr.is_accepted

Draw 500 samples and trace the HW acceptance outcomes.
samples, is_accepted = tfpmcmc.sample_chain(
current_state=init_state,
kernel=hmc_unbounded_with_tuning,
num_burnin_steps=500, num_results=500,
trace_fn=trace_fn)

cov_reducer = tfp.experimental.mcmc.CovarianceReducer()
covariance_estimate, _ = tfp.experimental.mcmc.sample_fold(
 current_state=init_state,
 kernel=hmc_unbounded_with_tuning,
 num_burnin_steps=500, num_results=500,
 trace_fn=trace_fn,
 reducers=[cov_reducer],
)

smc_result = sample_sequential_monte_carlo(
 prior_log_prob_fn,
 likelihood_log_prob_fn,
 current_state,
 make_kernel_fn=make_rwmh_kernel)
```

---

**Discussion**

**Advantages and challenges of pervasive data parallelism**

Q: Why is the pervasive data parallelism advantageous? Can we just use vectorizing function like tf.vectorized_map or jax.vmap and wrap the TK into a SIMD function?

A: Pervasive data parallelism opens new opportunities to directly manipulate across "batches", even during one MCMC step. For example, we can flexibly implement population-wise MCMC methods, or coupling MCMC methods.

There are also significant challenges, for example, in the implementation of the NUTS sampler.

---

**Challenges of being modular**

Onion-like nesting TransitionKernels are powerful, but also create challenges when we try to access some properties in one of the layer of the kernel_results. We have made some progress to make this process easier with tfp.experimental.unnest

---

**Contact**

[https://www.tensorflow.org/probability/](https://www.tensorflow.org/probability/)
Reach out to us on our Google group if you have any questions: tfprobability@tensorflow.org