1. Motivation

- PPLs are extremely powerful and flexible, but this makes inference hard
 - PPLs have a scaling problem: focus primarily on small programs

 Our goal: Focus on discrete programs, make a high-performance exact inference algorithm for this specialized setting

 - Discreteness is very common, many programs have discrete parts (text, graphs, computer networks, ...)
 - Discreteness is challenging for many methods
 - Many methods rely on differentiability
 - Low-probability observations
 - Exact inference preferable to approximate
 - Does not propagate errors
 - Suitable for high-consequence decisionmaking

2. Method

- Key idea: factorize the inference computation (see Figure 1a)

\[
\begin{align*}
0.1
\times (0.2
\times 0.4
+ 0.1
\times 0.8
\times 0.5
+ 0.9
\times 0.3
\times 0.4
+ 0.9
\times 0.7
\times 0.5
)
\end{align*}
\]

Versus...

\[
\begin{align*}
0.1
\times (0.2
\times 0.4
+ 0.8
\times 0.5
)
+ 0.9
\times (0.3
\times 0.4
+ 0.7
\times 0.5
)
\end{align*}
\]

- Finding and exploiting these factorization opportunities can be hard!
- We do it with binary decision diagrams (BDDs)

3. Experiments

- Show Dice can perform exact inference on extremely large programs
 - For instance, a 1.9 megabyte program with over 100k random variables

- Compared Dice against Psi and Ace (specialized Bayesian network solver)

- Three main experiments:
 1. Common Baselines
 2. Single-marginal Bayesian network inference
 3. All-marginal Bayesian network inference

4. Conclusion

- Github: https://github.com/SHoltzen/dice
- Webpage: http://dicelang.cs.ucla.edu/

5. Acknowledgments

This work is partially supported by NSF grants #IIS-1943641, #IIS-1956441, #CCF-1837129, DARPA grant #N66001-17-2-4032, a Sloan Fellowship, and gifts by Intel and Facebook research. The authors would like to thank Jon Aytaç and Philip Johnson-Freyd for feedback on paper drafts.