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Efficient Generative Modelling of Protein Structure Fragments using a Deep Markov Model

Fragment libraries are often used in protein structure prediction, simulation and
design as a means to significantly reduce the vast conformational search space.
Current state-of-the-art methods for fragment library generation do not properly
account for aleatory and epistemic uncertainty, respectively due to the dynamic
nature of proteins and experimental errors in protein structures.
Additionally, they typically rely on information that is not generally or readily
available, such as homologous sequences, related protein structures and other
complementary information.
To address these issues, we developed BIFROST, a novel take on the fragment
library problem based on a Deep Markov Model architecture combined with
directional statistics for angular degrees of freedom, implemented in the deep
probabilistic programming language Pyro.
BIFROST is a probabilistic, generative model of the protein backbone dihedral
angles conditioned solely on the amino acid sequence.
BIFROST generates fragment libraries with a quality on par with current state-of-
the-art methods at a fraction of the runtime, while requiring considerably less
information and allowing efficient evaluation of probabilities.

ABSTRACT

Fragment libraries [1] find wide application in protein structure prediction,
simulation, design and experimental determination [2-4]. Fragment libraries are
used in a divide-and-conquer approach, whereby a full-length protein is divided into
a manageable sub-set of shorter stretches of amino acids for which backbone
conformations (figure 1) are sampled. Typically, sampling is done using a finite set
of fragments derived from experimentally determined protein structures. Fragment
libraries are used in state-of-the-art protein structure prediction frameworks such as
Rosetta [5], I-TASSER [6], and AlphaFold [7].
Here, we present BIFROST - Bayesian Inference for FRagments Of protein
STructures – the first deep, generative, probabilistic model of protein backbone
angles that solely uses the amino acid sequence as input. BIFROST is based on a
Deep Markov Model (DMM) architecture [8] and represents the angular variables (ϕ
and ψ) in a principled way using directional statistics [9].

INTRODUCTION

Figure 1: Schematic of the three dihedral angles (ϕ, ψ, and ω) that parameterise the
protein backbone. R represents the side chain.

BIFROST consists of a DMM with an architecture similar to an Input-Output HMM (IO-HMM) [10]. The model employs the Markovian structure of an HMM, but with
continuous latent states (z) and with neural networks parameterising the transition and emission densities. The model was extended with a bidirectional recurrent neural network
processing the amino acid sequence. This processed information is passed to the transition (T) network to transform the previous latent state. The periodic angle values are
modelled through a wrapped student t distribution parameterised by an emitter (E) neural network. The structure of the model is shown in figure 2a along with the factorised joint
distribution over latent states and the sequence of ϕ/ψ angle pairs, denoted x, given the amino acid sequence, denoted a (equation 1-3). The model is trained through stochastic
variational inference with a variational distribution (guide). The guide has a similar structure to the model (figure 2b) but parses observed angles along with the amino acid
sequence to infer distributions over latent states given the amino acid sequence and angles (equation 4).

MATERIALS & METHODS

RESULTS

The model was able to recreate the observed Ramachandran plots, of
5000 previously unseen sequences, with minimal added noise (figure
3a). Additionally, BIFROST captures individual amino acid properties
(figure 3b), as evidenced by the individual Ramachandran plots of the
flexible residue glycine, the rigid residue proline, and leucine to
represent the general behavior of the remaining amino acids. Finally,
BIFROST can model sequence dependency as evidenced in figure 3c,
showing superimposed cartoon representations of 100 backbone
samples from BIFROST (blue) conditioned on fragments that were
observed to be either α-helix, β-strand, or coil (yellow).

Figure 2: The BIFROST model (a) and variational distribution (b). Grey
nodes are latent random variables, white circular nodes are observed
variables, white rectangular nodes represent hidden states from
bidirectional Recurrent Neural Networks (RNNs), and black squares
represent neural networks. E and T denote the emitter and the transition
networks, respectively, while C denotes the combiner network.
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Figure 3: a) Ramachandran plot as observed and as modelled by BIFROST.
b) Observed and modelled Ramachandran plots of special case amino acids
glycine and proline along with leucine to represent the general case. c)
Fragments modelled from sequences with known secondary structure top
(alpha-helix), middle (beta-sheet) and bottom (coil). Modelled structures
(blue) were superimposed on the observed (yellow).

Benchmarking

BIFROST was benchmarked against Rosetta’s fragment picker, which selects
fragments from a database of experimentally determined structures based on
auxiliary information such as secondary structure predictions.
BIFROST performs on par with the fragment picker and shows similar RMSD
distributions stratified by secondary structure, despite relying only on sequence,
while doing so with an improved runtime (figure 4).
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Figure 4 a): Precision AUC of fragment libraries for CASP13 regular (T) targets
generated by BIFROST on and Rosetta’s fragment picker. b): Runtime of BIFROST and
Rosetta for generating fragment libraries for proteins of varying sequence length. c):
RMSD distributions stratified by secondary structure.c) Alpha
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