Expectation Programming

MOTIVATION

Most statistical workflows require calculating an expectation. Standard probabilistic programming systems (PPSs) focus on automating the computation of the posterior p(x|y) and then use Monte Carlo methods to estimate an expectation $\mathbb{E}_{p(x|y)}[f(x)]$. If the target function f(x) is known ahead of time, this pipeline is inefficient. We introduce the concept of an Expectation **Programming Framework (EPF). Whereas PPSs can be** viewed as tools for approximating conditional distributions, the aim of the inference engine in an EPF is to directly estimate expectations.

EXPECTATION PROGRAMMING IN TURING

- We introduce a specific implementation of an EPF, called **EPT** (Expectation Programming in Turing), built upon *Turing* [2]
- In EPT, programs define expectations
- EPT takes as input a Turing-style program and uses program transformations to create a new set of three valid Turing programs to **construct target-aware** estimators
- We can repurpose any native Turing inference algorithm that provides a marginal likelihood estimate into a target-aware inference strategy
- We show that EPT provides **significant empirical gains** in practice

BACKGROUND

The recently proposed Target-Aware Bayesian Inference (TABI) framework of [1] provides a means of creating a target-aware estimator by breaking the expectation into three parts

$$\mathbb{E}_{p(x|y)}[f(x)] = \frac{Z_1^+ - Z_1^-}{Z_2}$$

where

$$Z_{1}^{+} = \int p(x, y) max(f(x), 0) dx$$
$$Z_{1}^{-} = \int p(x, y) max(-f(x), 0) dx$$
$$Z_{2}^{-} = \int p(x, y) dx$$

References

[1] Rainforth, T., Goliński, A., Wood, F., & Zaidi, S. (2020). <u>Target–aware</u> Bayesian inference: how to beat optimal conventional estimators. Journal of Machine Learning Research, 21(88). [2] <u>https://turing.ml/</u>

Adapting Probabilistic Programming Systems to Estimate Expectations Efficiently

@exp	ec	ta	tion	funct	ion	expt_	<pre>prog(y)</pre>
	X	\sim	Norm	al(0,	1)	L -	1 0 0
	V	\sim	Norm	al(x,	1)		
	re	tu	rn x	^3			
end							

Figure 1: An EPT program (left) gets transformed into three valid Turing programs (right). The Turing programs can be used to estimate the expectation defined by the input program in a target-aware manner.

EPSRC Centre for Doctoral Training in Autonomous Intelligent Machines & Systems

FULL-LENGTH PAPER AT: https://arxiv.org/abs/2106.04953

STATISTICAL VALIDITY

We provide a proof of the statistical correctness of the EPT approach.

Theorem 1. Let \mathcal{E} be a valid program in EPT with unnormalized density $\gamma(x_{1:n})$ and reference measure $\mu(x_{1:n})$, defined on possible traces $x_{1:n} \in \mathcal{X}$, and return value $F = f(x_{1:n})$. Then $\gamma_1^+(x_{1:n}) \coloneqq \gamma(x_{1:n}) \max(0, f(x_{1:n}),$ $\gamma_1^-(x_{1:n}) \coloneqq \gamma(x_{1:n}) \max(0, -f(x_{1:n}),$ and $\gamma_2(x_{1:n}) \coloneqq \gamma(x_{1:n})$ are all valid unnormalized probabilistic program densities. Further, if $\{\hat{Z}_1^+\}_m, \{\hat{Z}_1^-\}_m, \{\hat{Z}_2^-\}_m$ are sequences of estimators for $m \in \mathbb{N}^+$ such that $\{\hat{Z}_1^{\pm}\}_m \xrightarrow{p} \int_{\mathcal{X}} \gamma_1^{\pm}(x_{1:n}) d\mu(x_{1:n}),$ $\{\hat{Z}_2\}_m \xrightarrow{p} \int_{\gamma} \gamma_2 (x_{1:n}) d\mu(x_{1:n})$

Where $\stackrel{P}{\rightarrow}$ means convergence in probability as $m \to \infty$, then

$$\frac{\left(\left\{\hat{Z}_{1}^{+}\right\}_{m}-\left\{\hat{Z}_{1}^{-}\right\}_{m}\right)}{\left\{\hat{Z}_{2}^{-}\right\}_{m}} \xrightarrow{p} \mathbb{E}[F].$$

EXPERIMENTS

Figure 2: Relative Squared Error (RSE) for estimating the posterior predictive density of a Gaussian model. The target-aware estimator (TAAnIS) significantly outperforms the two baselines.

The full paper has:

- Additional experiments for an SIR epidemiology model and a Bayesian hierarchical model
- Evaluations with respect to the effective sample size

Authors

Tim Reichelt

Luke Ong

Adam Goliński

Tom Rainforth