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Introduction

Efficient and accurate Bayesian inference using Markov Chain Monte Carlo methods in the big data case is an open
challenge. Recently, [1] proposed Energy Conserving Subsampling (ECS) for Bayesian inference with Hamiltonian
Monte Carlo (HMC) on subsets of data. However, their method for subsampling requires computing a memory intensive
control variate based on a second order Taylor expansion. To avoid this, we propose a novel control variate we call
Variational ECS (VECS). VECS uses an approximate posterior for likelihood estimation, thus preventing the quadratic
expansion of feature space. However, VECS currently fails to effectively incorporate the state of the Markov chain.

Experiments

For experimentation we use logistic regression on a subset (1.5M examples) of the Higgs dataset.

Perturbed method

For observations {xi}n and an additive log likelihood (log p(x|θ) =
∑n

i=1 log p(xi|θ)) [2] showed we can produce an unbi-
ased estimate of the log likelihood by

log p̂s(x|θ) =

n∑
i=1

q(xi, θ) + ds(θ),

where s ∼ U is a simple random subsample of data indices and

ds(θ) =
1

|s|

|s|∑
i=1

psi(xsi|θ)− q(xsi, θ).

[1] uses a taylor expansion as a proxy

q(xi, θ) = log p(xi|θ∗) + (∇θ log p)(xi|θ∗)(θ − θ∗) + (θ − θ∗)T (∇2
θ log p)(xi|θ∗)(θ − θ∗),

where θ∗ is MAP estimate. Note that if we can compute
∑

i qxi(θ) in time proportional to ds(θ), we obtain an log likelihood
estimator with time complexity proportional to the subsample size.
The estimator log p̂s(x|θ) is a biased estimator of the likelihood. [3] first proposed improving this estimator by

L̂(θ) = exp

(
l̂(θ)− 1

2
σ̂2(θ)

)
, (1)

which assumes log p̂(θ|x) ∼ N (log p̂(θ|x), σ2), where σ2 is the population variance. [2] showed that with

log σ̂2(θ) =
( n
m

)2∑
i

(
dsi(θ)− d̄si(θ)

)2
,

and the proxy expanded around the posterior mode (θ∗) the error of the inferred posterior is O( 1
nm2).

Variational Energy Conserving Subsampling

Let p(x, θ) be a latent model with a prior π(θ) and Q be a family of parameteric variational distributions over θ ⊆ Rd, then
we can infer q∗ψ(θ|x) ∈ Q ≈ p(θ|x) using VI by optimizing ψ. So we have

p(θ|x) =
p(x|θ)π(θ)

p(x)
≈ q∗ψ(θ|x) =⇒ p(x|θ) ≈

p(x)q∗ψ(θ|x)

π(θ)
=⇒ log p(x|θ) ≈ log p(x) + log q∗ψ(θ|x)− log π(θ) (2)

From the evidence lower bound (ELBO) and assuming an additive log-likelihood we have

log p(x) ≥ Eφ∼q∗ψ[
log p(x|φ)︷ ︸︸ ︷∑

i

log p(xi|φ) + log π(φ)− log q∗ψ(φ|x)]. (3)

Substituting Equation (3) into Equation (2) and considering the contribution of xi ∈ x we obtain

log p(xi|θ) ≥ Eφ∼q∗ψ[log p(xi|φ)] + Eφ∼q∗ψ[log π(φ)]− log π(θ) + log q∗ψ(θ|x)− Eφ∼q∗ψx[q
∗
ψ(φ|x)] ≡ q(xi, θ) (4)

which is our variational likelihood proxy.
We can precompute (∀xi)q∗ψx[log p(xi|φ)] to make the complexity of

∑
i q(xi, θ) proportional to ds(θ).
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