PrROBABILISTIC INDUCTIVE CONSTRAINT LOGIC
2

Fabrizio Riguzzil, Elena BellodiQ, Riccardo ZeseQ7 Marco Albertil, Evelina Lamma
Machine Learning 110(4): 723-754 (2021)

IDepartment of Mathematics and Computer Science and *Department of Engineering, University of Ferrara, Italy

Probabilistic Constraint Logic Theories PCLT parameter learning

Inductive Constraint Logic (De Raedt and Van Laer): learning Constraint Logic Theories (sets of integrity constraints) from interpretations

rather than from entailment. Problem Given

In this work: Probabilistic Constraint Logic Theories (PCLTs) and a system (PASCAL) to perform discriminative learning of their structure e a PCLT theory T

and parameters from interpretations. L ,

Language A PCLT is a set of probabilistic integrity constraints (ICs) of the Example (from Bongard) e aset It ={I;,..., I} of positive interpretations

form p; = Li,..., Ly = 3(P1);...;3(F,); V(N1 . V(Niy) Background knowledge: e aset T~ ={Igy1,...,Ir} of negative interpretations

Semantics A PCLT T defines a probability distribution on the set W of ground in(A, B) < inside(A, B)

constraint logic theories called possible theories; for each grounding of the body in(A, D) < inside(A, C),in(C, D) e a normal logic program BG (background knowledge)

of each IC, we include the IC in a possible theory with probability p; and we PCLT: find the parameters of T" such that the likelihood

assume all groundings to be independent. {C1 =05 = triangle(T), square(S),in(T,S) — false} I = 19[ P(a|I,) ﬁ P(o|I,)

An IC’s probability is the sum of the probabilities of the possible theories where 0 L . , oL v '

a grounding of the constraint is present. 2v The t.)Od}.’ of €1 is true for the single - e

In cach possible theory, An IC C' is true in an interpretation I (I = C) if and substitution 7'/2 and S/1 thus m; = is maximized. 6)TLhe likelihood is given by the probability that the example labels are observed for each example.
only if, for each substitution # such that each literal in Body(C)8 is ground 1 and P(@|I) = 0.5. The equation 7= = 0 does not admit a closed form solution, so we must use optimization to find the maximum of L.

and true in I, at least one disjunct in Head(C)8 is true in I. . We can optimize the likelihood with gradient descent, where weights are updated using the formula

The probability P(®|I) of the positive class given an interpretation I, the o SN The body of C is true for three pairs oL
probability of a PCLT T satistying I, is 6% a0 3V (triangle, square) thus m; = 3 and Pnt1 = Pn — €VpL(P) = py — Evp%
2 =
L] P(&[1) = 0.125. where € is the learning rate defining the size of the step done by gradient descent along the gradient and p is the vector containing the
P(®|I) = Z P(®,w|I) = Z P(&|w, ) P(w|I) = Z P(w) parameters p;, or with a second order method such as Limited-memory BFGS (L-BFGS).
el el weW,MBGUD) w Experiments show that gradient descent outperforms L-BFGS in most cases in terms of area under the PR and ROC curves, and execution
time.
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PASCAL: PCLT structure learning Experimental results
Problem Given 1: function PASCAL(Z*,Z7,BG, NC, MLB, MD, MLP, MLN , BeamSize, MaxSteps) We compared PASCAL with the PLP algorithms LIFTCOVER, SLIPCOVER and LEMUR, the MLNs algorithms MLN-BC/MLN-BT, the
2 Steps =1 (probabilistic) relational classifier TILDE
e aset Tt ={I,...,Ip} of positive interpretations — Probabiis '
{h,. .. Q} p p i ieg;naf (false < true, —oo) > Empty IC Average AUC-PR Average AUC-ROC
e aset I =11, ..., Ip} of negative interpretations | —
g+, Ir} & P > NewBeam = | [ Dataset SLIPCOVER LIFT-EM LIFT-LBFGS PASCAL TILDE | Dataset SLIPCOVER LIFT-EM LIFT-LBFGS PASCAL TILDE |
. 6 while Beam is not empty do > ICs search 5 Y5 Bupa 1 1 1 1 0.500
e a normal logic program BG (background knowledge) - Remove the first IC (C, LL) from Beam upa _ 1 1 1 1 0.420 e . - i :
Ref c all refi ts of O o MIB. MD.MLP. and MLN Carcinogenesis 0.745 0.672 0.561 0.770  0.707 arcinogenesis 0.695 0.766 0.472 0.763  0.667
e a language bias i &+ L TeHnements ol & respecting L IR, Al Financial 0.173 0.126 0.187 0.317  0.123 Financial 0.568 0.432 0.535 0.745 0478
9: for all ”C € Refdo o . NMondial 0.776 0.763 0.723 0.652  0.650 Mondial 0.630 0.663 0.643 0.495  0.500
find a PCLT T that maximizes the likelihood 10: ({C"}, LL") <—LEARNP//*/RAI\{IS({C }Z%,77,BG) > gradient descent Mutagen, 0.920 0.971 0795 0902 0851 Mutagen. 0.826 0.931 0.649 0.806  0.778
11: NewBeam +INSERT((C", LL"), NewBeam) Pyrimidine 0.956 1 0.819 0.990  0.769 Pyrimidine 0.925 1 0850 0.993  0.815
Q R 12 if size(NewBeam) > BeamSize then Sisya 0.708 0.706 0.706 0.622  0.621 Sisya 0.719 0.372 0.721 0.502  0.499
I — H P(@‘]q) H P(@llr) 13: R.emove the last element of NewBeam Sisyb 0.287 0.286 0.286 0.286 0.286 SiS:yb. 0.500 0.500 0.500 0.500 0.500
n 641 14: end if Triazine 0.560 0.734 0.760 0.855 0.685 Triazine 0.544 0.713 0.760 0.803 0.600
= "= 15: end for Yeast 0.428 0.502 0.448 0.469 0.588 Yeast 0.733 0.786 0.721 0.794  0.718
PASCAL solves this problem by first identifying good candidate ' end while Bongard 0.899 0.966 0.970 0635 0.300 Bongard 094 097 0-987 0.7 0500
. . . . 17: Beam < NewBeam
ICs and then searching for a theory guided by the log likelihood s Steps = Steps + 1 MINBO MLN.BT MLN-BC MLN-BT
(LL) of the data. 19 until Steps > MazSteps Dataset LEMUR MLN-BC  samp. MLN-BT samp. PASCAL Dataset LEMUR MLN-BC  samp. MLN-BT samp. PASCAL
Parameters: 20 T+ 0, LL <+ — > Theory search Carcinogenesis  0.691 0.619 0.633 0.503 0.494 0.770 Carcinogenesis ~ 0.691 0.619 0.633 0.503 0.494 0.770
21:  repeat Mondial 0.864  0.585 0.742 0.735 0.781 0.652 Mondial 0.864  0.585 0.742 0.735 0.781 0.652
e M LB, the maximum number of literals in the body of ICs; 22: Remove the first couple (C, LL) from Beam Mutagenesis 0.952 0.690 0.831 0.872 - 0.902 Mutagenesis 0.952 0.690 0.831 0.872 - 0.902
23; (T, LL') <+~ LEARNPARAMS(T U {C},Z",77,BG) o . . . .
e M D, the maximum number of disjuncts in the head of ICs; " if LI > LL then The three datasets where PASCAL performs well - Triazine, Financial and Carcinogenesis - have a small number of examples but a large
_ _ 25: T+« T,LL+ LU number of different predicates, possibly indicating that the expressive language bias is beneficial when the dataset is not very big but has a
e MLP and M LN, the maximum number of literals allowed 2%6: end if rich structure
in a P disjunct and a N disjunct respectively. 2r: until Beam is empty or T contains NC' 1Cs
28: return 7'

20: end function




