
Probabilistic Inductive Constraint Logic

Fabrizio Riguzzi1, Elena Bellodi2, Riccardo Zese2, Marco Alberti1, Evelina Lamma2

Machine Learning 110(4): 723-754 (2021)
1Department of Mathematics and Computer Science and 2Department of Engineering, University of Ferrara, Italy

Probabilistic Inductive Constraint Logic

Fabrizio Riguzzi1, Elena Bellodi2, Riccardo Zese2, Marco Alberti1, Evelina Lamma2

Machine Learning 110(4): 723-754 (2021)
1Department of Mathematics and Computer Science and 2Department of Engineering, University of Ferrara, Italy

Probabilistic Constraint Logic Theories

Inductive Constraint Logic (De Raedt and Van Laer): learning Constraint Logic Theories (sets of integrity constraints) from interpretations
rather than from entailment.
In this work: Probabilistic Constraint Logic Theories (PCLTs) and a system (PASCAL) to perform discriminative learning of their structure
and parameters from interpretations.
Language A PCLT is a set of probabilistic integrity constraints (ICs) of the
form pi :: L1, . . . , Lb → ∃(P1); . . . ;∃(Pn);∀¬(N1); . . . ;∀¬(Nm)
Semantics A PCLT T defines a probability distribution on the set W of ground
constraint logic theories called possible theories ; for each grounding of the body
of each IC, we include the IC in a possible theory with probability pi and we
assume all groundings to be independent.
An IC’s probability is the sum of the probabilities of the possible theories where
a grounding of the constraint is present.
In each possible theory, An IC C is true in an interpretation I (I |= C) if and
only if, for each substitution θ such that each literal in Body(C)θ is ground
and true in I, at least one disjunct in Head(C)θ is true in I.
The probability P (⊕|I) of the positive class given an interpretation I, the
probability of a PCLT T satisfying I, is

P (⊕|I) =
∑
w∈W

P (⊕, w|I) =
∑
w∈W

P (⊕|w, I)P (w|I) =
∑

w∈W,M(BG∪I)|=w

P (w)

Example (from Bongard)
Background knowledge:
in(A,B)← inside(A,B)
in(A,D)← inside(A,C), in(C,D)
PCLT:
{C1 = 0.5 :: triangle(T), square(S), in(T, S)→ false}

The body of C1 is true for the single
substitution T/2 and S/1 thus m1 =
1 and P (⊕|I) = 0.5.

The body of C1 is true for three pairs
(triangle, square) thus m1 = 3 and
P (⊕|I) = 0.125.

PCLT parameter learning

Problem Given
• a PCLT theory T

• a set I+ = {I1, . . . , IQ} of positive interpretations

• a set I− = {IQ+1, . . . , IR} of negative interpretations

• a normal logic program BG (background knowledge)
find the parameters of T such that the likelihood

L =

Q∏
q=1

P (⊕|Iq)
R∏

r=Q+1

P (|Ir)

is maximized. The likelihood is given by the probability that the example labels are observed for each example.
The equation ∂L

∂pi
= 0 does not admit a closed form solution, so we must use optimization to find the maximum of L.

We can optimize the likelihood with gradient descent, where weights are updated using the formula

pn+1 = pn − ε∇pL(p) = pn − ε∇p
∂L

∂p

where ε is the learning rate defining the size of the step done by gradient descent along the gradient and p is the vector containing the
parameters pi, or with a second order method such as Limited-memory BFGS (L-BFGS).
Experiments show that gradient descent outperforms L-BFGS in most cases in terms of area under the PR and ROC curves, and execution
time.

PASCAL: PCLT structure learning

Problem Given

• a set I+ = {I1, . . . , IQ} of positive interpretations

• a set I− = {IQ+1, . . . , IR} of negative interpretations

• a normal logic program BG (background knowledge)

• a language bias

find a PCLT T that maximizes the likelihood

L =

Q∏
q=1

P (⊕|Iq)
R∏

r=Q+1

P (|Ir)

PASCAL solves this problem by first identifying good candidate
ICs and then searching for a theory guided by the log likelihood
(LL) of the data.
Parameters:

• MLB, the maximum number of literals in the body of ICs;

• MD, the maximum number of disjuncts in the head of ICs;

• MLP and MLN , the maximum number of literals allowed
in a P disjunct and a N disjunct respectively.

1: function PASCAL(I+, I−,BG,NC ,MLB ,MD ,MLP ,MLN ,BeamSize,MaxSteps)
2: Steps = 1
3: Beam ← (false ← true,−∞) . Empty IC
4: repeat
5: NewBeam = []
6: while Beam is not empty do . ICs search
7: Remove the first IC (C , LL) from Beam
8: Ref← all refinements of C respecting MLB ,MD ,MLP , and MLN
9: for all C ′ ∈ Ref do
10: ({C ′′},LL′′)←LearnParams({C ′}, I+, I−,BG) . gradient descent
11: NewBeam ←Insert((C ′′, LL′′),NewBeam)
12: if size(NewBeam) > BeamSize then
13: Remove the last element of NewBeam
14: end if
15: end for
16: end while
17: Beam ← NewBeam
18: Steps = Steps + 1
19: until Steps > MaxSteps
20: T ← ∅, LL← −∞ . Theory search
21: repeat
22: Remove the first couple (C ,LL) from Beam
23: (T ′,LL′)←LearnParams(T ∪ {C}, I+, I−,BG)
24: if LL′ > LL then
25: T ← T ′, LL← LL′

26: end if
27: until Beam is empty or T contains NC ICs
28: return T
29: end function

Experimental results

We compared PASCAL with the PLP algorithms LIFTCOVER, SLIPCOVER and LEMUR, the MLNs algorithms MLN-BC/MLN-BT, the
(probabilistic) relational classifier TILDE.

Average AUC-PR

Dataset SLIPCOVER LIFT-EM LIFT-LBFGS PASCAL TILDE

Bupa 1 1 1 1 0.420

Carcinogenesis 0.745 0.672 0.561 0.770 0.707

Financial 0.173 0.126 0.187 0.317 0.123

Mondial 0.776 0.763 0.723 0.652 0.650

Mutagen. 0.920 0.971 0.725 0.902 0.851

Pyrimidine 0.956 1 0.819 0.990 0.769

Sisya 0.708 0.706 0.706 0.622 0.621

Sisyb 0.287 0.286 0.286 0.286 0.286

Triazine 0.560 0.734 0.760 0.855 0.685

Yeast 0.428 0.502 0.448 0.469 0.588

Bongard 0.899 0.966 0.970 0.635 0.300

MLN-BC MLN-BT
Dataset LEMUR MLN-BC samp. MLN-BT samp. PASCAL

Carcinogenesis 0.691 0.619 0.633 0.503 0.494 0.770

Mondial 0.864 0.585 0.742 0.735 0.781 0.652

Mutagenesis 0.952 0.690 0.831 0.872 – 0.902

Average AUC-ROC

Dataset SLIPCOVER LIFT-EM LIFT-LBFGS PASCAL TILDE

Bupa 1 1 1 1 0.500

Carcinogenesis 0.695 0.766 0.472 0.763 0.667

Financial 0.568 0.432 0.535 0.745 0.478

Mondial 0.630 0.663 0.643 0.495 0.500

Mutagen. 0.826 0.931 0.649 0.806 0.778

Pyrimidine 0.925 1 0.850 0.993 0.815

Sisya 0.719 0.372 0.721 0.502 0.499

Sisyb 0.500 0.500 0.500 0.500 0.500

Triazine 0.544 0.713 0.760 0.803 0.600

Yeast 0.733 0.786 0.721 0.794 0.718

Bongard 0.944 0.975 0.987 0.749 0.500

MLN-BC MLN-BT
Dataset LEMUR MLN-BC samp. MLN-BT samp. PASCAL

Carcinogenesis 0.691 0.619 0.633 0.503 0.494 0.770

Mondial 0.864 0.585 0.742 0.735 0.781 0.652

Mutagenesis 0.952 0.690 0.831 0.872 – 0.902

The three datasets where PASCAL performs well - Triazine, Financial and Carcinogenesis - have a small number of examples but a large
number of different predicates, possibly indicating that the expressive language bias is beneficial when the dataset is not very big but has a
rich structure.

