HOW TO TRAIN YOUR PROGRAM

David Tolpin Hongseok Yang

A PROBABILISTIC PROGRAMMING PATTERN FOR BAYESIAN LEARNING FROM DATA

ARXIV:2105.03650

Hierarchical models

Example

- Multiple boxes are randomly filled by *K* marbles from a bag.
- y_{ij} is the *j*th draw from the *i*th box.
- Infer the the number of blue marbles θ_i in each box.

$$\tau \sim \text{Beta}(1, 1)$$
 $\theta_i \sim \text{Binomial}(K, \tau)$
 $y_{ij} \sim \text{Bernoulli}\left(\frac{\theta_i}{K}\right)$

Definition

- Each group y_i is conditioned on θ_i .
- All θ_i are conditioned on τ .

$$\tau \sim H$$
$$\theta_i \sim D(\tau)$$
$$y_i \sim F(\theta_i)$$

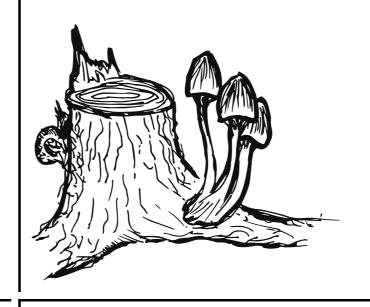
A hierarchical model cannot compress training data

- Learns from data each box's θ_i is influenced by draws from all boxes.
- Learning from training data is computationally inefficient full data set must be held.

Stump and fungus

Observation

- In Bayesian modelling, information about data is conveyed through conditioning on the data.
- In a hierarchical model, influence of the ith group on hyperparameter τ passes through group parameters θ_i .



Pattern

- Training is accomplished through inference on a hierarchical model, in the usual way.
- ullet Training outcomes are summarized as a collection of samples $ilde{ heta}$, representing the mixture distribution of $heta_i$ of all groups.
- For inference on new data item y, a stump-and-fungus model is employed:

$$\tilde{\theta} \sim \text{Hierarchical}(Y)$$

$$------$$

$$\tau \sim H$$

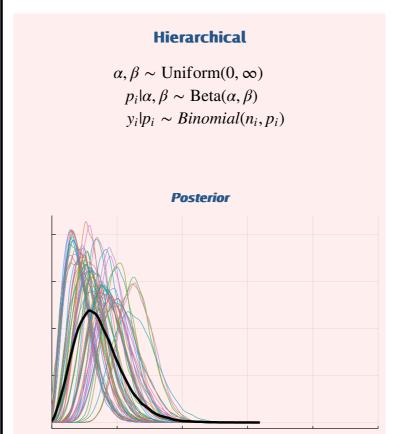
$$\tilde{\theta}, \theta | \tau \sim D(\tau)$$

$$y | \theta \sim F(\theta)$$

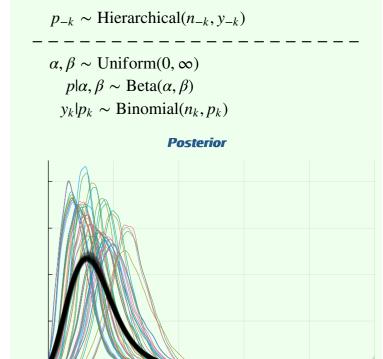
Problem: learning from data

- Population \mathcal{Y} is a set of sets $y_i \in Y$ of observations $y_{ij} \in y_i$.
- Members of each y_i are drawn from distribution F with unobserved parameter θ_i , $y_{ij} \sim F(\theta_i)$.
- θ_i are drawn from a common distribution H.
- Goal: devise a scheme that,
 - given a *training set* $Y \subset \mathcal{Y}$,
 - infers the posterior distribution of $\theta_k | Y, y_k$ for any $y_k \in \mathcal{Y}$
 - in a shorter amortized time than running inference on a hierarchical model $Y \cup \{y_k\}$.

Tumor incidence in rats



Stump and fungus



Loading [MathJax]/extensions/MathZoom.js