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1. Overview 2. Learning & Inference
We propose a generative probabilistic programming—based architecture for Shape prior 'eaming from Synthetic data Our system learns voxel shape models

for new objects by variational inference
from a handful of isolated views of the
object. This learned distribution serves
as the shape prior in the scene
generative model. We show that we
acquire an accurate 3D shape prior
from just 5 depth images on both real
and synthetic scenes.

modeling 3D objects and scenes, and use our architecture to do accurate o=
and robust object pose estimation from RGBD images.

Images:

Variational

Objects are represented as distributions over 3D voxel models:

Scenes are represented using scene graphs:

Now, with the learned shape priors for each object type, we parse scenes
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Together, the 3D voxel models of shape, scene graph structure, !:or mferepce ot th_e Scene graph. parqmeters, we use MCMC proposals
and scene graph parameters define a 3D scene... incorporating heuristics such as iterative closest point (ICP) and random walk.
. . . . 3. Results
...and with a real-time graphics engine
like OpenGL, the scene can be We evaluate our method on the standard YCB-Video dataset of real RGBD
rendered Into a depth image: images and a synthetic dataset of difficult scenes containing occlusions and
physical contact. The task is to estimate all object poses from RGBD image input.
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We have defined a probabilistic generative model of a latent 3D scene and depth —
Image observation. Now, conditioning on an observed depth image, we can use
inference in our generative model to infer the latent 3D scene:




