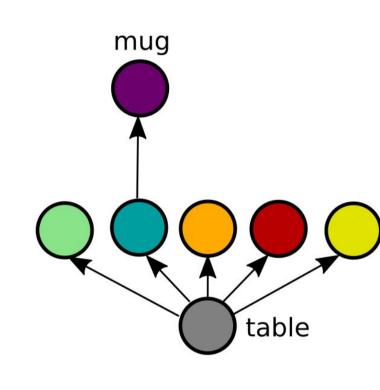

LITT

1. Overview


We propose a generative probabilistic programming-based architecture for modeling 3D objects and scenes, and use our architecture to do accurate and robust object pose estimation from RGBD images.

Objects are represented as distributions over **3D voxel models**:

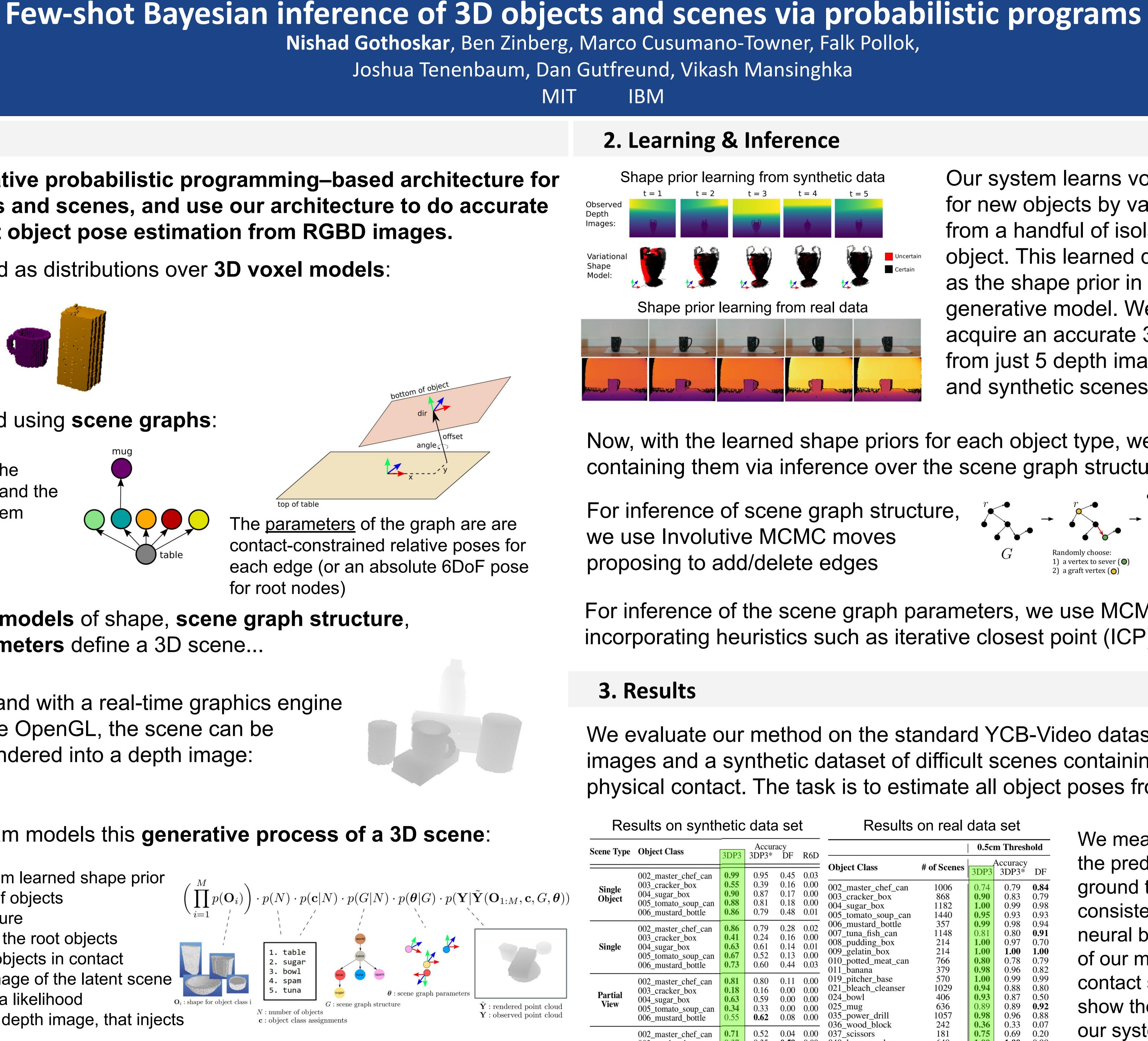
Scenes are represented using scene graphs:

The graph structure defines the objects (nodes) in the scene and the physical contacts between them (edges)

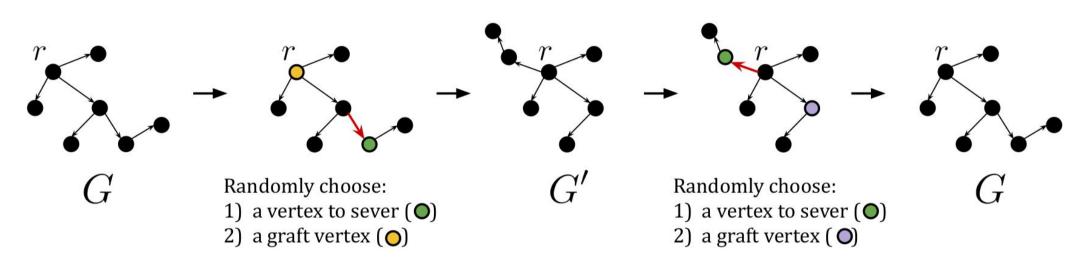
Together, the **3D voxel models** of shape, **scene graph structure**, and scene graph parameters define a 3D scene...

...and with a real-time graphics engine like OpenGL, the scene can be rendered into a depth image:

Our probabilistic program models this generative process of a 3D scene:

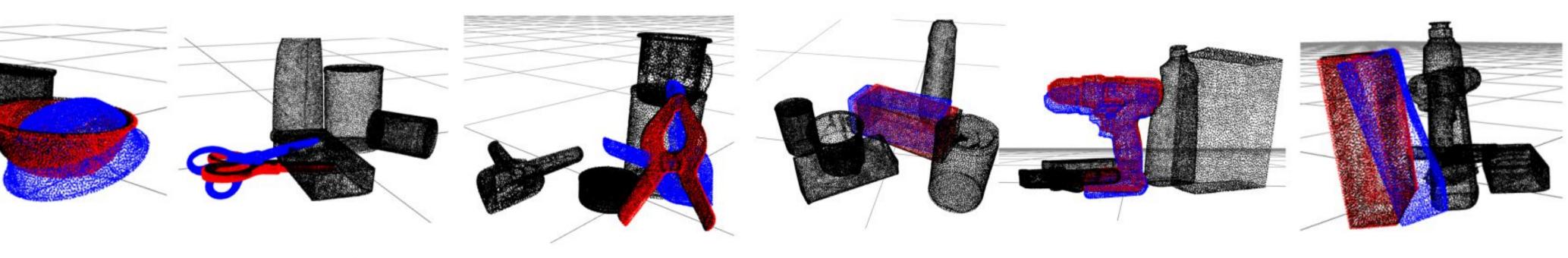

- 1. Sample 3D voxel shape from learned shape prior
- 2. Sample number and type of objects
- 3. Sample scene graph structure
- 4. Sample absolute poses for the root objects
- 5. Sample relative poses for objects in contact
- 6. Renderer an ideal depth image of the latent scene
- 7. Sample a point cloud from a likelihood parameterized by the ideal depth image, that injects noise and missing data


We have defined a probabilistic generative model of a latent 3D scene and depth image observation. Now, conditioning on an observed depth image, we can use inference in our generative model to infer the latent 3D scene:



Our system learns voxel shape models for new objects by variational inference from a handful of isolated views of the object. This learned distribution serves as the shape prior in the scene generative model. We show that we acquire an accurate 3D shape prior from just 5 depth images on both real and synthetic scenes.

Now, with the learned shape priors for each object type, we parse scenes containing them via inference over the scene graph structure and parameters.


For inference of the scene graph parameters, we use MCMC proposals incorporating heuristics such as iterative closest point (ICP) and random walk.

Partially Occluded

We evaluate our method on the standard YCB-Video dataset of real RGBD images and a synthetic dataset of difficult scenes containing occlusions and physical contact. The task is to estimate all object poses from RGBD image input.

Results on real da	ita set
--------------------	---------

Object ClassAccuracy3DP33DP3*DFR6D		R6D		0.5cm Threshold					
		SDF3	DF	KOD	Object Class # of Scenes		Accuracy		
002_master_chef_can	0.99	0.95	0.45	0.03			3DP3	3DP3*	DF
003_cracker_box	0.55 0.90	0.39	0.16	0.00	002_master_chef_can	1006	0.74	0.79	0.84
004_sugar_box	0.90	$\begin{array}{c} 0.87\\ 0.81 \end{array}$	$\begin{array}{c} 0.17\\ 0.18\end{array}$	$\begin{array}{c} 0.00\\ 0.00\end{array}$	003_cracker_box	868	0.90	0.83	0.79
005_tomato_soup_can	0.86	0.81	$0.18 \\ 0.48$	0.00	004_sugar_box	1182	1.00	0.99	0.98
000_IIIustalu_00ttle	006_mustard_bottle 0.86	0.79	0.40		005_tomato_soup_can	1440	0.95	0.93	0.93
002_master_chef_can	0.86	0.79	0.28	0.02	006_mustard_bottle	357	0.99	0.98	0.94
003_cracker_box	0.41	0.24	0.16	0.00	007_tuna_fish_can	1148	0.81	0.80	0.91
004_sugar_box	0.63	0.61	0.14	0.01	008_pudding_box	214	1.00	0.97	0.70
005_tomato_soup_can	0.67	0.52	0.13	0.00	009_gelatin_box	214	1.00	1.00	1.00
006_mustard_bottle	0.73	73 0.60 0	0.44	0.03	010_potted_meat_can 011 banana	766 379	0.80 0.98	$\begin{array}{c} 0.78 \\ 0.96 \end{array}$	$0.79 \\ 0.82$
002 master chaf can	0.81	0.80	0.11	0.00	019_pitcher_base	570	1.00	0.99	0.99
002_master_chef_can 003 cracker box	0.18	0.80	0.00	0.00	021_bleach_cleanser	1029	0.94	0.88	0.80
005_clackel_box 004_sugar_box	0.63	0.10	0.00	0.00	024_bowl	406	0.93	0.87	0.50
005_tomato_soup_can	0.34	0.33	0.00	0.00	025_mug	636	0.89	0.89	0.92
006_mustard_bottle	0.55	0.62	0.08	0.00	035_power_drill	1057	0.98	0.96	0.88
			1211 2211 22		036_wood_block	242	0.36	0.33	0.07
002_master_chef_can	0.71	0.52	0.04	0.00	037_scissors	181	0.75	0.69	0.20
003_cracker_box	0.37	0.35	0.59	0.00	040_large_marker	648	1.00	1.00	0.99
004_sugar_box	0.02	0.01	0.06	0.00	051_large_clamp	712	0.68	0.64	0.25
005_tomato_soup_can	0.04	0.00	0.01	0.00	052_extra_large_clamp	682	0.33	0.27	0.12
006_mustard_bottle	0.70	0.43	0.55	0.03	061_foam_brick	288	0.26	0.24	0.01

We measure the error between the predicted pose and the ground truth pose. Our system consistently outperforms the neural baselines and ablations of our method that don't treat contact specially. Below, we show the types of improvements our system makes over the baseline methods.