

PPCHECK: Verifying the Equivalence of Probabilistic Programs

Alexandru Dinu¹

Sourav Chakraborty²

 ${
m Kuldeep\ Meel}^1$

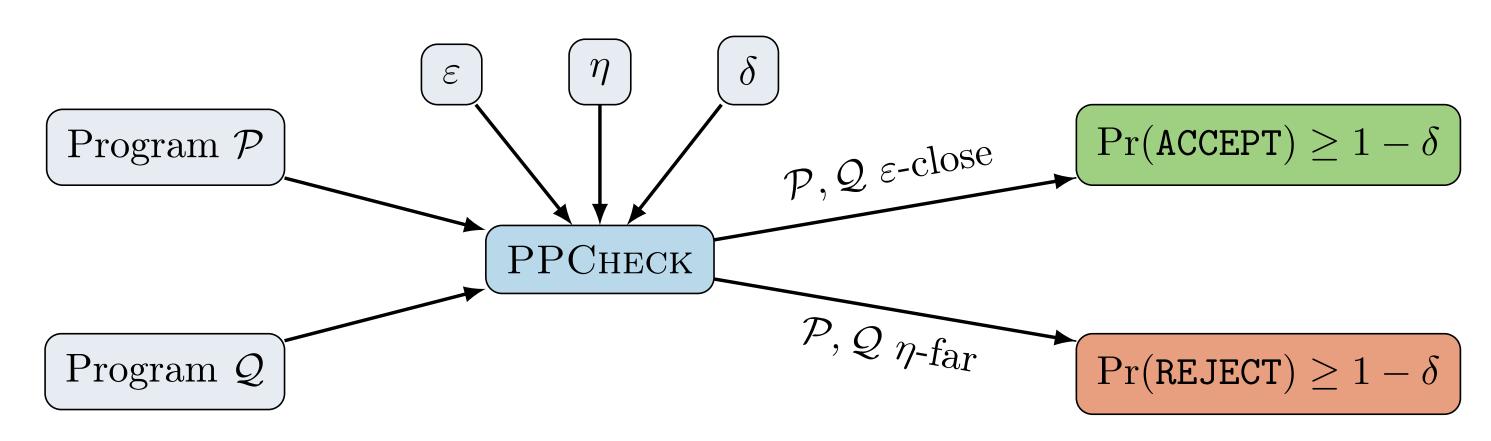
School of Computing

¹National University of Singapore

²Indian Statistical Institute

Our Contribution

- Goal: Test the equivalence of probabilistic programs.
- Current setup: Test the approximate equivalence of programs specifying discrete probability distributions.
- Offer guarantees in terms of closeness (tolerance parameter ε) and farness (intolerance parameter η), with error parameter δ .



Introducing PPCHECK: Reducing Approximate Probabilistic Program Equivalence to a Distribution Testing problem.

Given two probabilistic programs \mathcal{P} and \mathcal{Q} , with high probability ($\geq 1 - \delta$), PPCHECK will:

- ACCEPT \mathcal{P} and \mathcal{Q} as approximately equivalent if their underlying distributions \mathbf{p} and \mathbf{q} are ε -close.
- REJECT \mathcal{P} and \mathcal{Q} as approximately equivalent if their underlying distributions \mathbf{p} and \mathbf{q} are η -far.

Definition 1 (ε -closeness). Probabilistic programs \mathcal{P} and \mathcal{Q} (with distributions \mathbf{p} and \mathbf{q}) are ε -close in multiplicative sense in ℓ_{∞} distance if:

$$(\forall) \ i \in [n], \ 1 - \varepsilon \le \frac{\mathbf{p}(i)}{\mathbf{q}(i)} \le 1 + \varepsilon$$

Definition 2 (η -farness). Probabilistic programs \mathcal{P} and \mathcal{Q} (with distributions \mathbf{p} and \mathbf{q}) are η -far in ℓ_1 distance if:

$$\sum_{i \in [m]} |\mathbf{p}(i) - \mathbf{q}(i)| \ge \eta$$

Introducing a preliminary **benchmark suite** for assessing the sanity of testing algorithms: collection of probabilistic programs written in WebPPL (Goodman-Stuhlmüller-14).

Example

```
// program_P.wppl
var P = function () {
   var x = sample(RandomInteger({n: upper_bound}));
   var y = count_set_bits(x);
   return y;
}
var p = Infer({model: P, method: 'enumerate'})

// program_Q.wppl
var Q = function () {
   var x = sample(Gaussian({mu: mu, sigma: sigma}));
   var y = round(x);
   return y;
}
var q = Infer({model: Q, method: 'MCMC'})
```

```
# tester.py
import pplib # wrappers over WebPPL programs
import decide # decision algorithms

# can call sample(...) and condition(...) on p and q
n = 10
p = pplib.Distribution("program_P.wppl", upper_bound=2**n)
q = pplib.Distribution("program_Q.wppl", mu=n/2, sigma=sqrt(n)/2)

result = decide.ppcheck(p, q, eps=0.3, eta=0.85, delta=0.2)
```

Future Work

- Current limitation: PPCHECK can only test discrete probability distributions and cannot handle non-termination.
- Explore **program-aware** testing make PPCHECK aware of program structure and properties.
- Incorporate the verification of inference engines as part of the benchmarks.

Central Idea

Algorithm 1 PPCHECK $(\mathcal{P}, \mathcal{Q}, \varepsilon, \eta, \delta)$

```
1: t \leftarrow f(\varepsilon, \eta, \delta) // number of samples to draw from both programs (derived from the guarantees)
```

- 2: $S_1 \leftarrow t$ samples from \mathcal{P}
- 3: $S_2 \leftarrow t$ samples from Q
- 4: for $(\sigma_1, \sigma_2) \in \mathbf{zip}(S_1, S_2)$ do
- 5: $\alpha_1 \leftarrow \text{estimate } \frac{\mathbf{p}(\sigma_1)}{\mathbf{p}(\sigma_2)} \text{ by conditioning } \mathcal{P} \text{ on } (\sigma_1, \sigma_2)$
- 6: $\alpha_2 \leftarrow \text{estimate } \frac{\mathbf{q}(\sigma_1)}{\mathbf{q}(\sigma_2)} \text{ by conditioning } \mathcal{Q} \text{ on } (\sigma_1, \sigma_2)$
- 7: **if** α_1 and α_2 are far from each other **then** // reject if $\frac{\alpha_1}{\alpha_2}$ or $\frac{\alpha_2}{\alpha_1}$ exceed a threshold value (derived from the guarantees)
- 8: return REJECT
- 9: return ACCEPT
- If \mathcal{P} and \mathcal{Q} are η -far, we hope to find a witness pair of samples (σ_1, σ_2) on which the ratios $\frac{\mathbf{p}(\sigma_1)}{\mathbf{p}(\sigma_2)}$ and $\frac{\mathbf{q}(\sigma_1)}{\mathbf{q}(\sigma_2)}$ differ significantly.
- If \mathcal{P} and \mathcal{Q} are ε -close, then such witness does not exist, expecting the algorithm to accept all iterations.
- The estimate α for $\frac{\mathbf{p}(\sigma_1)}{\mathbf{p}(\sigma_2)}$ is computed as $\alpha = \frac{bias}{1 bias}$, where $bias = \frac{\mathbf{p}(\sigma_1)}{\mathbf{p}(\sigma_1) + \mathbf{p}(\sigma_2)}$ is obtained by leveraging **conditional sampling**.
- First, we compute a multiplicative estimate for bias, and if $bias > \frac{1}{2}$, an additive re-estimation is performed, to ensure that 1 bias is a good estimate for $\frac{\mathbf{p}(\sigma_2)}{\mathbf{p}(\sigma_1) + \mathbf{p}(\sigma_2)}$.
- Conditioning a program on (σ_1, σ_2) essentially turns it into a (possibly) biased coin.

Experimental Results

Benchmark name	Support size	PPCHECK		BFRSW	
		Result	Samples (\log_{10})	Result	Samples (\log_{10})
discrete_normal_close_4	5	ACCEPT	7.046	ACCEPT	6.834
discrete_normal_close_6	7	ACCEPT	7.655	ACCEPT	6.938
discrete_normal_close_8	9	ACCEPT	8.349	ACCEPT	7.015
discrete_normal_close_10	11	ACCEPT	7.676	ACCEPT	7.077
uniform_eps_close_12	2^{12}	ACCEPT	7.573	REJECT	8.887
uniform_eps_close_14	2^{14}	ACCEPT	7.583	REJECT	9.308
uniform_eps_close_16	2^{16}	ACCEPT	7.577	timeout	
uniform_eps_close_18	2^{18}	ACCEPT	7.585	timeout	
discrete_normal_far_4	5	REJECT	5.802	REJECT	5.976
discrete_normal_far_6	7	REJECT	5.755	REJECT	6.117
discrete_normal_far_8	9	REJECT	5.963	REJECT	6.219
discrete_normal_far_10	11	REJECT	5.794	REJECT	6.300
uniform_eta_far_12	2^{12}	REJECT	6.200	REJECT	8.887
uniform_eta_far_14	2^{14}	REJECT	6.172	REJECT	9.308
uniform_eta_far_16	2^{16}	REJECT	6.184	timeout	
uniform_eta_far_18	2^{18}	REJECT	6.114	timeout	

Table 1: Parameters: $\varepsilon = 0.3, \eta = 0.85, \delta = 0.2, \text{ timeout} = 10^9 \text{ samples / call.}$