
PPCheck: Verifying the Equivalence of Probabilistic Programs
Alexandru Dinu1 Sourav Chakraborty2 Kuldeep Meel1

1National University of Singapore 2Indian Statistical Institute

Our Contribution
• Goal: Test the equivalence of probabilistic programs.
• Current setup: Test the approximate equivalence of programs specifying discrete probability distributions.
• Offer guarantees in terms of closeness (tolerance parameter ε) and farness (intolerance parameter η), with error parameter δ.

PPCheck

Program P

Program Q

ε η δ

Pr(ACCEPT) ≥ 1− δ

Pr(REJECT) ≥ 1− δ

P,Q ε-close

P,Q η-far

Introducing PPCheck: Reducing Approximate Probabilistic Program Equivalence to a Distribution Testing problem.

Given two probabilistic programs P and Q, with high probability (≥ 1− δ), PPCheck will:

• ACCEPT P and Q as approximately equivalent if their underlying distributions p and q are ε-close.

• REJECT P and Q as approximately equivalent if their underlying distributions p and q are η-far.

Definition 1 (ε-closeness). Probabilistic programs P and Q (with distributions p and q) are ε-close in multiplicative sense in `∞ distance if:

(∀) i ∈ [n], 1− ε ≤ p(i)

q(i)
≤ 1 + ε

Definition 2 (η-farness). Probabilistic programs P and Q (with distributions p and q) are η-far in `1 distance if:∑
i∈[n]

|p(i)− q(i)| ≥ η

Introducing a preliminary benchmark suite for assessing the sanity of testing algorithms: collection of probabilistic programs written in WebPPL
(Goodman-Stuhlmüller-14).

Example

// program_P.wppl
var P = function () {

var x = sample(RandomInteger({n: upper_bound}));
var y = count_set_bits(x);
return y;

}
var p = Infer({model: P, method: 'enumerate'})

// program_Q.wppl
var Q = function () {

var x = sample(Gaussian({mu: mu, sigma: sigma}));
var y = round(x);
return y;

}
var q = Infer({model: Q, method: 'MCMC'})

tester.py
import pplib # wrappers over WebPPL programs
import decide # decision algorithms

can call sample(...) and condition(...) on p and q
n = 10
p = pplib.Distribution("program_P.wppl", upper_bound=2**n)
q = pplib.Distribution("program_Q.wppl", mu=n/2, sigma=sqrt(n)/2)

result = decide.ppcheck(p, q, eps=0.3, eta=0.85, delta=0.2)

result
{

"value": True, # ACCEPT
"report": {

"samples": 53_073_788,
"log10": 7.724,
"time": 87.532,
"iterations": 38,

}
}

Central Idea

Algorithm 1 PPCheck(P,Q, ε, η, δ)
1: t← f(ε, η, δ) // number of samples to draw from both programs (derived from the guarantees)
2: S1 ← t samples from P
3: S2 ← t samples from Q
4: for (σ1, σ2) ∈ zip(S1, S2) do

5: α1 ← estimate
p(σ1)

p(σ2)
by conditioning P on (σ1, σ2)

6: α2 ← estimate
q(σ1)

q(σ2)
by conditioning Q on (σ1, σ2)

7: if α1 and α2 are far from each other then // reject if
α1

α2
or

α2

α1
exceed a threshold value (derived from the guarantees)

8: return REJECT

9: return ACCEPT

• If P and Q are η-far, we hope to find a witness pair of samples (σ1, σ2) on which the ratios
p(σ1)

p(σ2)
and

q(σ1)

q(σ2)
differ significantly.

• If P and Q are ε-close, then such witness does not exist, expecting the algorithm to accept all iterations.

• The estimate α for
p(σ1)

p(σ2)
is computed as α =

bias

1− bias
, where bias =

p(σ1)

p(σ1) + p(σ2)
is obtained by leveraging conditional sampling.

• First, we compute a multiplicative estimate for bias, and if bias >
1

2
, an additive re-estimation is performed, to ensure that 1− bias is a good

estimate for
p(σ2)

p(σ1) + p(σ2)
.

• Conditioning a program on (σ1, σ2) essentially turns it into a (possibly) biased coin.

Experimental Results

Benchmark
name

Support
size PPCheck BFRSW

Result Samples (log10) Result Samples (log10)

discrete_normal_close_4 5 ACCEPT 7.046 ACCEPT 6.834
discrete_normal_close_6 7 ACCEPT 7.655 ACCEPT 6.938
discrete_normal_close_8 9 ACCEPT 8.349 ACCEPT 7.015
discrete_normal_close_10 11 ACCEPT 7.676 ACCEPT 7.077
uniform_eps_close_12 212 ACCEPT 7.573 REJECT 8.887
uniform_eps_close_14 214 ACCEPT 7.583 REJECT 9.308
uniform_eps_close_16 216 ACCEPT 7.577 timeout
uniform_eps_close_18 218 ACCEPT 7.585 timeout
discrete_normal_far_4 5 REJECT 5.802 REJECT 5.976
discrete_normal_far_6 7 REJECT 5.755 REJECT 6.117
discrete_normal_far_8 9 REJECT 5.963 REJECT 6.219
discrete_normal_far_10 11 REJECT 5.794 REJECT 6.300
uniform_eta_far_12 212 REJECT 6.200 REJECT 8.887
uniform_eta_far_14 214 REJECT 6.172 REJECT 9.308
uniform_eta_far_16 216 REJECT 6.184 timeout
uniform_eta_far_18 218 REJECT 6.114 timeout

Table 1: Parameters: ε = 0.3, η = 0.85, δ = 0.2, timeout = 109 samples / call.

Future Work
• Current limitation: PPCheck can only test discrete probability distributions and cannot handle non-termination.

• Explore program-aware testing – make PPCheck aware of program structure and properties.

• Incorporate the verification of inference engines as part of the benchmarks.

