
pre_xpre_x

Probabilistic Programming with Streams
t = 0 t = 1 t = 2

obs = 3.2

. . .

Inference Engine

let kalman = stream {
init = 0.0;
step (pre_x, obs) = {
let x = sample(gaussian(pre_x,1)) in
let y = sample(gaussian(x,1)) in
observe (y, obs);
(x, x)

}
}

Inference Engine

let kalman = stream {
init = 0.0;
step (pre_x, obs) = {
let x = sample(gaussian(pre_x,1)) in
let y = sample(gaussian(x,1)) in
observe (y, obs);
(x, x)

}
}

obs = 4.8

Inference Engine

let kalman = stream {
init = 0.0;
step (pre_x, obs) = {
let x = sample(gaussian(pre_x,1)) in
let y = sample(gaussian(x,1)) in
observe (y, obs);
(x, x)

}
}

obs = -1.2

0 5-5
x

0 5-5
x

0 5-5
x

let kalman = stream {
init = 0.0;
step (pre_x, obs) = {
let x = sample(gaussian(pre_x,1)) in
let y = sample(gaussian(x,1)) in
observe (y, obs);
(x, x)

}
}

Bounded-Memory Delayed Sampling1,2

t = 0

x0

y0y0

t = 1

x1

y1y1

t = 2

x2

y2y2

. . .

1: Murray et. al. AISTATS 2018
2: Baudart et. al. PLDI 2020

• Goal: Run inference in bounded memory.
• I.e. even if programs run for infinite time, should have a finite memory 

footprint

• Goal: Bound the size of the delayed sampling graph.
• Maintain a finite set of reachable nodes that are accessible from 

pointers in the program state 

Semantic Properties

x0 ← nil ∷
y0 ← x0 ∷
observe y0 ∷
x1 ← x0 ∷
y1 ← x1 ∷
observe y1 ∷
x2 ← x1 ∷
y2 ← y1 ∷
observe y2 ∷
...

let kalman = stream {
init = 0.0;
step (pre_x, obs) = {
let x = sample(gaussian(pre_x,1)) in
let y = sample(gaussian(x,1)) in
observe (y, obs);
(x, x)

}
}

1

The m-consumed Property

Property: There exists a bound m such that every variable introduced is 
m-consumed.

x0 ← nil ∷
y0 ← x0 ∷
observe y0 ∷
x1 ← x0 ∷
y1 ← x1 ∷
observe y1 ∷
x2 ← x1 ∷
y2 ← y1 ∷
observe y2 ∷
...

y0 is 0-consumed

x0 is 1-consumedlet kalman = stream {
init = 0.0;
step (pre_x, obs) = {
let x = sample(gaussian(pre_x,1)) in
let y = sample(gaussian(x,1)) in
observe (y, obs);
(x, x)

}
}

The Unseparated Paths Property
Property: there exists an n such that at any time step t, no variable in 
the program state at t starts an unseparated path longer than n

x0 starts an unseparated
path longer than 2

Program State
x0 ← nil ∷
y0 ← x0 ∷
observe y0 ∷
x1 ← x0 ∷
y1 ← x1 ∷
observe y1 ∷
x2 ← x1 ∷
y2 ← y1 ∷
observe y2 ∷
...

let kalman = stream {
init = 0.0;
step (pre_x, obs) = {
let x = sample(gaussian(pre_x,1)) in
let y = sample(gaussian(x,1)) in
observe (y, obs);
(x, x)

}
}

x0

x1

x2

t = 0

t = 1

t = 2

The m-consumed Static Analysis

• Key idea: measure the variables introduced but not yet used
• Can approximate by taking a superset of introduced variables
• The analysis passes if the set is empty after a step

let kalman = stream {
init = 0.0;
step (pre_x, obs) = {
let x = sample(gaussian(pre_x,1)) in
let y = sample(gaussian(x,1)) in
observe (y, obs);
(x, x)

}
}

x0
y0
None

Introduced 
Variables

x0 ← nil ∷
y0 ← x0 ∷
observe y0

The Unseparated Paths Static Analysis

• Key idea: track an upper bound of unseparated paths between 
program variables
• Can approximate with a larger upper bound
• Analysis passes when longest path converges
let kalman = stream {
init = 0.0;
step (pre_x, obs) = {
let x = sample(gaussian(pre_x,1)) in
let y = sample(gaussian(x,1)) in
observe (y, obs);
(x, x)

}
}

(x0, x0), 0
(x0, y0), 1
(x0, y0), 1
(x0, x1), 1
(x1, y1), 1
(x1, y1), 1
(x1, x2), 1
(x2, y2), 1
(x2, y2), 1

Longest
Unsep. Path

x0 ← nil ∷
y0 ← x0 ∷
observe y0 ∷
x1 ← x0 ∷
y1 ← x1 ∷
observe y1 ∷
x2 ← x1 ∷
y2 ← y1 ∷
observe y2 ∷

Results

Analysis is
precise

Memory is
Probabilistically

Bounded

Memory is
Always

Bounded

Statically Bounded-Memory Delayed Sampling for Probabilistic Streams
Eric Atkinson

MIT
Guillaume Baudart

INRIA/ENS
Louis Mandel
IBM Research

Charles Yuan
MIT

Michael Carbin
MIT

• We can define properties on traces of probabilistic programs
• A trace records all operations the program executes

1: Murray et. al. “Delayed Sampling and Automatic Rao—Blackwellization of Probabilistic Programs”. AISTATS 2018
2: Baudart et. al. “Reactive Probabilistic Programming”. PLDI 2020


