Composing Importance Samplers with Lenses
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Importance Sampling and Variational Inference String diagrams as a first-order PPL Lenses compose forward and backward
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Ole/'?S/lLy, and g uarantee strict proper welg htlng ' Theorem 6 (Bayes’ rule for primitive (nested) importance samplers) Given a link
- . S, function {p that represents some [{g(b)], = pg(7g;b), the smooth pass enforces strict proper
L =1 ; prumitive programs weighting with respect to the posterior conditional density [f] = y#(7f | Tg;a). We write
L =/ idyg ; tdentity morphisms ‘ ‘ ‘
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Denotational Semantics. Ve assume the existence of 9
denotational semant/cs, .Wh/Ch for a prograrr f’ define a prior Theorem 3 (The filtering procedure targets the filtering density) For any string E I ]
and unnormalized O'GHS/T)/ diagram f with inputs a : A and any test statistic h(7), the weighted expectation of samples xamp e.
. / B ./ . , B ./ targets the filtering distribution | f], = fyf(T;a). Precisely, deep generative mixture model
[F()]y(7) =vp(T:c),  [f()]p(7) = prlTic).
Inference. Given the unnormalized density, we want to = fla) (w h(T)| = / dr 7y f(TE a) h(t) =2 f(a) o f(r;a.) h(7)].
approximate the corresponding normalized density o o o | | @
Proof By induction. Trivial for the base case of the identity morphism. True by defini-
,yf ( T C/) tion for the primitive lens morphism, thanks to the strict proper weighting of the primitive
P N ’ I — . ! probabilistic program f. The inductive cases follow from the weighting rules given above, @
ch (T’ ¢ ) 7 [ ( C/) ? Zf (C ) / dt Yf (T’ ¢ ) particularly the fact that we simply multiply weights across the diagram. |
Conditioned evaluation: We can evaluate a program f by drawing @ @
randomness from a trace 1 to Obtaln a new trace . Figure 1: A probabilistic graphical model for a deep generative mixture model. A graphical
/ model separates each random variable from each other.
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Definition: YVG requn?e that each prlmltlve progll'am be Stl'-'ICt/y Lenses compute forward and backward ’
properly weighted with respect to its unnormalized density [£(a)],
i} From any Cartesian monoidal category where we can
e [Vh(T)| = [ dTv¢(T;a) h(T) . e ,,
(a) define a primitive "backwards pass”’, we get a lens
A 7 i n category with backwards passes for all diagrams.
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| \ Figure 3: A deep generative mixture model, displayed as a string diagram. The string
. diagram shows each conditional distribution as a box, and the random variables connecting
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