Sam Stites^{*1}

¹Khoury College of Computer Sciences, Northeastern University, Massachusetts, USA ²AMLab, University of Amsterdam, Amsterdam, The Netherlands

Denotational Semantics. We assume the existence of denotational semantics, which for a program f, define a prior and unnormalized density

 $\llbracket f(c') \rrbracket_{\gamma}(\tau) = \gamma_f(\tau; c'), \quad \llbracket f(c') \rrbracket_p(\tau) = p_f(\tau; c').$

Inference. Given the unnormalized density, we want to approximate the corresponding normalized density

 $\pi_f(\tau;c') = \frac{\gamma_f(\tau;c')}{Z_f(c')}, \qquad Z_f(c') = \int d\tau \, \gamma_f(\tau;c').$

Definition. A evaluation $c, \tau, \rho, w \leftarrow q(c')$ is strictly properly weighted for an unnormalized density $\gamma_q \equiv Z_q \pi_q$, if for all measurable functions h

Learning Proposals for Probabilistic Programs with Inference Combinators

Heiko Zimmermann*²

Hao Wu¹

Importance sampling improves gradient estimates

Quantity of interest (return value of program)

Operational Semantics. We propose a grammar for composing importance samplers and develop inference rules which guarantee that these samplers are valid by construction.

- f ::= A primitive program
- p ::= f | extend(p, f)
- q ::= p | resample(q) | compose(q', q) | propose(p, q)

Theorem. Evaluation of an inference program q(c) is strictly properly weighted for its unnormalized density $[\![q(c)]\!]_{\gamma}$.

 $c_1, \tau_1, \rho_1, w_1 \leftarrow q(c_0)$ $c_2, \tau_2, \rho_2, w_2 \leftarrow p(c_0)[\tau_1]$

 $c_3, \tau_3, \rho_3, w_3 \leftrightarrow \text{marginal}(p)(c_0)[\tau_2]$

 $u_1 =$

 $\alpha \in \operatorname{dom}(\rho_1) \setminus (\operatorname{dom}(\tau_1) \setminus \operatorname{dom}(\tau_2))$

 $c_3, \tau_3, \rho_3, w_2 \cdot w_1/u_1 \leftrightarrow \text{propose}(p, q)(c_0)$

 $c_1, \tau_1, \rho_1, w_1 \leftarrow \mathsf{q}_1(c_0)$ $c_2, \tau_2, \rho_2, w_2 \leftarrow \mathsf{q}_2(c_1)$ $c_2, \tau_2 \oplus \tau_1, \rho_2 \oplus \rho_1, w_2 \cdot w_1 \Leftrightarrow \mathsf{compose}(\mathsf{q}_2, \mathsf{q}_1)(c_0)$

 $c_1, \tau_1, \rho_1, w_1 \leftrightarrow \mathsf{p}(c_0)$ $c_2, \tau_2, \rho_2, w_2 \leftrightarrow \mathsf{f}(c_1)$ $c_2, \tau_1 \oplus \tau_2, \rho_1 \oplus \rho_2, w_1 \cdot w_2 \leftrightarrow \mathsf{extend}(\mathsf{p}, \mathsf{f})(c_0)$

Optimization. We optimize the parameters of the neural proposals by optimizing a divergence or divergence-based stochastic bound \mathcal{D} at each level of nesting (propose) statement).

 $\mathscr{D}(\boldsymbol{\theta},\boldsymbol{\phi}) = D_1(p_1 || \boldsymbol{\pi}_1) + \boldsymbol{S}$

Initial proposal program Intermediate IS targets

Eli Sennesh¹ Jan-Willem van de Meent¹²

```
ho_1(oldsymbollpha)
```

 $\vec{c}_2, \vec{\tau}_2, \vec{\rho}_2 = \text{REINDEX}(\vec{a}_1, \vec{c}_1, \vec{\tau}_1, \vec{\rho}_1)$ $\vec{w}_2 = \text{MEAN}(\vec{w}_1)$ $\vec{c}_2, \vec{\tau}_2, \vec{\rho}_2, \vec{w}_2 \leftrightarrow \text{resample}(q)(\vec{c}_0)$

Learning Neural Proposals

$$\sum_{k=2}^{K} D_k(\pi_{k-1} || \pi_k)$$

Final IS targets

Example: Amortized Population Gibbs (APG) Samplers

Writing inference programs with combinators.

Combinators allow us to implement otherwise complicated inference algorithms with comparative ease.

APG algorithm block from paper:

for n in $1, \ldots, N$ do $G_{\phi} = 0$ $x^n \sim p^{\mathrm{DATA}}(x)$ for l in $1, \ldots, L$ do $z^{n,1,l} \sim q_{\phi}(z \mid x^n)$ for k in $2, \ldots, K$ do $\tilde{z}, \tilde{w} = z^{n,k-1}, w^{n,k-1}$ for b in $1, \ldots, B$ do for l in $1, \ldots, L$ do $\tilde{z}_b^l = \tilde{z}_b^{\prime \ l}$ $z^{n,k}, w^{n,k} = \tilde{z}, \tilde{w}$ return G_{ϕ}, z, w

APG code in combinators:

<pre>def pop_gibbs(target, propos</pre>
q = propose(partial(target
<pre>for s in range(sweeps):</pre>
for k in kernels:
q = propose(
<pre>extend(partial(tar</pre>
<pre>compose(partial(k,</pre>
return q

Inference results:

Implementation.

Combinators can implemented on top of most current PPLs. We provide an implementation based on probtorch and an open design document for pyro at the following:

> https://github.com/probtorch/combinators https://bit.ly/pyro-design

 $w^{n,1,l} \leftarrow p_{\theta}(x^n, z^{n,1,l}) / q_{\phi}(z^{n,1,l})$ $ilde{z}, ilde{w} = ext{RESAMPLE}(ilde{z}, ilde{w})$ $\tilde{z}_b^{\prime l} \sim q_\phi(\cdot \mid x^n, \tilde{z}_{-b}^l)$ $\tilde{w}^{l} = \frac{p_{\theta}(x^{n}, \tilde{z}_{b}^{\prime l}, \tilde{z}_{-b}^{l}) q_{\phi}(\tilde{z}_{b}^{l} | x^{n}, \tilde{z}_{-b}^{l})}{p_{\theta}(x^{n}, \tilde{z}_{b}^{l}, \tilde{z}_{-b}^{l}) q_{\phi}(\tilde{z}_{b}^{\prime l} | x^{n}, \tilde{z}_{-b}^{l})} \tilde{w}^{l}$ $G_{\phi} = G_{\phi} + \sum_{l=1}^{L} \frac{\tilde{w}^{l}}{\sum_{\nu} \tilde{w}^{l'}} \frac{d}{d\phi} \log q_{\phi}(\tilde{z}_{b}^{l} \mid x^{n}, \tilde{z}_{-b}^{l})$

sal, kernels, sweeps): , suffix=0), partial(proposal, suffix=0))

rget, suffix=s+1), partial(k, suffix=s)), suffix=s+1), resample(q, dim=0)))