
4 Learning Neural Proposals
Optimization. We optimize the parameters of the neural 
proposals by optimizing a divergence or divergence-based 
stochastic bound     at each level of nesting (propose 
statement). 
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Importance sampling improves 
gradient estimates

Importance Sampling

Use proposals qφ 
to sample from pθ

Variational Inference

Optimize proposals qφ 

using samples from qφ/pθ

Inference methods from 
probabilistic programming

Automatic differentiation 
and neural networks

Variational inference 
improves proposals
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move resample propose

A DSL for importance sampling

Operational Semantics. We propose a grammar for 
composing importance samplers and develop inference 
rules which guarantee that these samplers are valid by 
construction.

Theorem. Evaluation of an inference program         is 
strictly properly weighted for its unnormalized          
density               .      

2 Properly Weighted Program Evaluations

Quantity of interest
(return value of program)

Definition. A evaluation                              is strictly properly 
weighted for an unnormalized density                  , if for all 
measurable functions   

.

Sampler
(can be a black box)

Density of interest
(program posterior)

Constant of proportionality
(marginal likelihood)

Denotational Semantics. We assume the existence of 
denotational semantics, which for a program   , define a prior 
and unnormalized density 

Inference. Given the unnormalized density, we want to 
approximate the corresponding normalized density

5 Example: 
Amortized Population Gibbs (APG) Samplers

Writing inference programs with combinators. 
Combinators allow us to implement otherwise complicated 
inference algorithms with comparative ease. 

Algorithm 1 Amortized Population Gibbs Sampling
1: for n in 1, . . . , N do . Loop over batch items
2: G� = 0 . Initialize gradient to 0
3: xn ⇠ pDATA(x)
4: for l in 1, . . . , L do . Initialize particles
5: zn,1,l ⇠ q�(z | xn)
6: wn,1,l  p✓(xn, zn,1,l) / q�(zn,1,l)

7: for k in 2, . . . ,K do . Loop over Gibbs updates
8: z̃, w̃ = zn,k�1, wn,k�1

9: for b in 1, . . . , B do . Loop over block updates
10: z̃, w̃ = RESAMPLE(z̃, w̃)
11: for l in 1, . . . , L do . Update particles
12: z̃0 lb ⇠ q�(· | xn, z̃l�b)

13: w̃l =
p✓(x
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14: z̃lb = z̃0 lb
15: G� = G� +

PL
l=1

w̃l
P

l0 w̃
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d
d� log q�(z̃lb | xn, z̃l�b) . Accumulate gradients

16: zn,k, wn,k = z̃, w̃

17: return G�, z, w . Output: Gradients, NKL weighted samples

4 Neural Sufficient Statistics131

Gibbs sampling strategies that sample from exact conditionals rely on conjugacy relationships.132

Typically, we assume a prior and likelihood that can both be expressed as exponential families133

p(x | z) = h(x) exp{⌘(z)> T (x)� logA(⌘(z))},
p(z) = h(z) exp{�>T (z)� logA(�)}.

In these densities h(·) is a base measure, T (·) is a vector of sufficient statistics, and A(·) is a log134

normalizer. The two densities are jointly conjugate when135

T (z) = (⌘(z),� logA(⌘(z))) (13)

In this case, the posterior distribution lies in the same exponential family as the prior136

p(z | x) / h(z) exp
�
(�1 + T (x))>T (z)� (�2 + 1) logA(⌘(z))

 
. (14)

Typically, the prior p(z | �) and likelihood p(x | z) are not jointly conjugate, but it is possible to137

identify conjugacy relationships at the level of invididual blocks of variables,138

p(zb | z�b, x) / h(zb) exp{(�b,1 + T (x, z�b))
>T (zb)� (�b,2 + 1) logA(⌘(zb))}. (15)

In the more general setting we consider here, these conjugacy relationships will typically not hold.139

However, we can still take inspiration from such relationships to design variational distributions that140

make use of conditional independencies in a model. We will assume that each of the approximate141

Gibbs updates q�(zb | x, z�b) is an exponential family, whose parameters are computed from a vector142

of prior parameters � and a vector of neural sufficient statistics T�(x, z�b)143

q�(zb | x, z�b) = p(zb | �+ T�(x, z�b)). (16)

This parameterization has a number of desirable properties. Exponential families are the largest-144

entropy distributions that match the moments defined by the sufficient statistics (see e.g. Wainwright145

and Jordan [2008]), which is helpful when minimizing the inclusive KL divergence. In exponential146

families it is also more straightforward to control the entropy of the variational distribution. In147

particular, we can initialize T�(x, z�b) to output values close to zero in order to ensure that we148

initially propose from a prior and/or regularize T�(x, z�b) to help avoid local optima.149

A particularly useful case arises in models where the data x = {x1, . . . , xM} are independent150

conditioned on z. In these models it is often possible to partition the latent variables z = {zG, zL}151
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APG algorithm block from paper:

APG code in combinators:

Inference results:

Implementation.
Combinators can implemented on top of most current 
PPLs. We provide an implementation based on probtorch 
and an open design document for pyro at the following: 

https:/"github.com/probtorch/combinators

https:/"bit.ly/pyro-design

https://bit.ly/pyro-design

