Learning Proposals for Probabilistic Programs with Inference Combinators

Sam Stites™1

Helko Zimmermann*2

Hao Wu? Eli Sennesh?

Jan-Willem van de Meent12

TKhoury College of Computer Sciences, Northeastern University, Massachusetts, USA 2AMLab, University of Amsterdam, Amsterdam, The Netherlands

(can be a black box)

Importance Sampling and Variational Inference

Importance Sampling

Inference methods from

Use proposals g probabilistic programming

to sample from pe

Importance sampling improves
gradient estimates

Variational inference
improves proposals

Variational Inference

Automatic differentiation
and neural networks

Optimize proposals qe
using samples from ge/Ps

Properly Weighted Program Evaluations

Denotational Semantics. Ve assume the existence of
denotational semantics, which for a program f, define a prior
and unnormalized density

[F()]y(7) =w(m:c), [F()]p(T) = pr(T:c).

Inference. Given the unnormalized density, we want to
approximate the corresponding normalized density

Ve (T;
ﬂf(T;C,) — ;i(c/))) Zf(cl

— /dT Yr(T5c").

Definition. A evaluationc,t,p,w«~q(c’') is strictly properly
weighted for an unnormalized density Yy = £ZqTty , if for all
measurable functions h

4:q%c,> [W h(T)] = Zq(c/) {',;rq(,;cl) [l’f(f)]

Sampler Quantity of interest
(return value of program)

[
Density of interest

(program posterior)

Constant of proportionality
(marqginal likelihood)

A DSL for importance sampling

OHO Q O O

.«VO O OOO OOO

09 Q O O

move resample propose

Operational Semantics. \We propose a grammar for
composing importance samplers and develop inference
rules which guarantee that these samplers are valid by
construction.

f ::= A primitive program
p:.:= f|extend(p, f)

g::=p|resample(q) \ compose(q', q) | propose(p, Q)

Theorem. Evaluation of an inference programa(c) is
strictly properly weighted for its unnormalized

density [a(c)]y -
c1,T1,P1,w1 «~q(co) €2,T2,P2,W2 «~p(co) |T1]

c3,T3,P3,Ww3 «~marginal(p) (co) [TZ]

Uy = [p1(c)

acdom(py)\(dom(7)\dom(1))

c3, 13, P3, W2'W1/l/t1 ~° propose(p, CI) (CO)

C1,7T1,P1,Ww1°q1(co) €2,T,P2,W2+~02(C1) €1, 71, P1, w1 «~p(co) €2, T2, P2, w2+~ f(c1)
dom(p;) Ndom(py) =0 dom(p;)Ndom(py) =0 dom(p;) = dom(1,) ¢2,T2, P2 = REINDEX(d1,¢1,7T1,P1) Wy = MEAN(W1)
2, T2 DT, P2 P P1, Wa w1 «~ compose(dz, q1)(co) €2, T1 D T2, P1 D P2, w1 - w2 «~ extend(p, f)(co) G2, Ty, P2, Wy «~ resample(q) (o)

Learning Neural Proposals

Optimization. We optimize the parameters of the neural
proposals by optimizing a divergence or divergence-based
stochastic bound @ at each level of nesting (propose
statement).

2(0,9) =D1(p1]||m) +ZD/< -1 || 70k

/ \ T

Initial proposal program Intermediate IS targets Final IS targets

Example:
Amortized Population Gibbs (APG) Samplers

Writing inference programs with combinators.
Combinators allow us to implement otherwise complicated
Inference algorithms with comparative ease.

APG algorithm block from paper:

forninl,..., N do
Gy =0
T NpDATA(CI})

for/inl,...,Ldo

2~ gy (z | 27

wn,l,l%p (n nll)/q (nl,l)

forkinQ,...,Kdo

27 W = Zn,k—l) wn,k—l

forbinl,... Bdo
Z, W = RESAMPLE(,%, W)
for/inl,...,Ldo

wl ~
~ q¢ (| 2", Z b)
~l po(x" Zb’ b)q¢(zb|9@ Z) ~l
p9($n Zb)qcb(zbl‘xn 2 b)

~1 ~/1
“p = Rp

n

l

L W
Gy =Gg+ 215 S @ dq5 log g¢(Z, | 2™, 214)

z”’k, wk = Z, W

return G, 2, w

APG code in combinators:

def pop_gibbs(target, proposal, kernels, sweeps):
g = propose(partial (target, suffix=0), partial(proposal, suffix=0))
for s in range (sweeps):
for k in kernels:
q = propose(
extend(partial (target, suffix=s+1), partial(k, suffix=s)),
compose (partial (k, suffix=s+1), resample(q, dim=0)))
return (¢

Inference results:

Inference on Tracking

..
Nol || |l
l

Reconstructlon

Implementation.

Combinators can implemented on top of most current
PPLs. We provide an implementation based on probtorch
and an open design document for pyro at the following:

https://github.com/probtorch/combinators
https://bit.1 ro-design

https://bit.ly/pyro-design

