
Variant Generation for Augmented Gibbs Samplers

Our research explores the possibility of developing automated collapsing and
augmentation with Gibbs sampling, that could be used within a larger PPL. We
introduce “variants” because different samplers can be generated once you
add a variety of choices in transforming your model. Due to uncertainty in
performance, these variants need to be tested to evaluate their comparable
worth.

• Collapsing (or marginalization) is the process of integrating over some
parameters of the model and may be associated with a reduction of the
data to sufficient statistics of the marginal model.

• Augmentation is the inverse operation of collapsing. It involves adding
variables or parameters to the model to make it more tractable.

• A variant can be characterised by a graph G and a likelihood L. Each variant
is derived from the original model through the application of one or more
statistical operations, such as collapsing and augmentation.

Introduction

Sachith Seneviratne
sachith.Seneviratne@unimelb.edu.au

Wray Buntine
wray.buntine@monash.edu.au

Monash University, AustraliaUniversity of Melbourne, Australia

Experiments

Methodology Results

1) Verify generated samplers are equivalent to existing model
implementations by empirical analysis of results

2) Generate Parallelized code for the samplers using loop
parallelism and Hogwild sampling and evaluate performance.

Input – Model 
Specification

Output – Generated 
Code

Overall System 
Architecture

Result Similarity Parallelization

By running the Hungarian
algorithm on a distance metric
between generated matrices, it
is possible to compare the
similarity of the generated
results.

Analysis is performed on the
generated abstract code
structure to evaluate possible
parallelization options.

Table: Generated results for Parallelization experiment

Figure: Result similarity 
experiment over 5 repeats 

We present a demonstration system that allows
collapsing and augmentation to be applied to
exponential family probability models in order to
generate different variants of the model, and also
supports two simple methods of parallelism.


