
0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10 11 12

Sp
ee
du

p

Threads

Sandwood: Runtime Adaptable Probabilistic Programming for Java

Copyright © 2021, Oracle and/or its affiliates

Daniel Goodman, Adam Pocock, Jason Peck, Guy Steele

daniel.goodman@oracle.com

package examples.hmm;

model HMM(boolean[] measured, int nCoins) {
//Construct a transition matrix m.
double[] v = new double[nCoins] <~ 0.1;
double[][] m = dirichlet(v).sample(nCoins);

//Construct a weighting for the first
//coin to flip.
double[] initialCoin = dirichlet(v).sample();

//Construct a bias for each coin
double[] bias = beta(1.0, 1.0).sample(nCoins);

//Allocate space to record which coin is flipped.
int nFlips = measured.length;
int[] st = new int[nFlips];

//Calculate the movements between coins.
st[0] = categorical(initialCoin).sampleDistribution();
for (int i: [1..nFlips))

st[i] = categorical(m[st[i - 1]]).sampleDistribution();

//Flip the coins.
boolean[] flips = new int[nFlips];
for (int j: [0..nFlips))

flips[j] = bernoulli(bias[st[j]]).sample();

//Assert that the flips match the measured data.
flips.observe(measured);

}

//Construct the model
int nCoins = 3;
boolean[] flips = loadObservedFlips(....);
HMM model = new HMM(flips, nCoins);

//Set the retention policies
model.setDefaultRetentionPolicy(RetentionPolicy.MAP);
model.st.setRetentionPolicy(RetentionPolicy.NONE);

//Run 2000 inference steps to infer model values
model.inferValues(2000);

//Gather the results.
double[] bias = model.bias.getMAP();
double[][] transitions = model.m.getMAP();

Model and
input length

Iterations

1000 2000 4000 8000 16000

PyMC3, 1k 201.8s 388.4s 769.4s 1523s 3021s

Sandwood, 1k 0.174s 0.367s 0.760s 1.450s 2.809s

Sandwood, 10k 1.764s 3.499s 7.500s 14.34s 25.77s

Comparing the example HMM model in Sandwood (Single
threaded) with the same model in PyMC3.

Speedups are in excess of 1000X

Intermediate
representation

Sandwood
model

Source to source
translation and

compile

API
intermediate

classes

Run intermediate
API code

int (1) int (nFlips)

int (i)

get get

int[][] (m)int[] (st)

put

sample Construct Categorical

minus

int (1) Const 1

intint int[]

categoricalint

int[] (st)

for loop

Traces
between
variables

Intermediate
representation

Construct inference
methods

Explore DAG

Construct
support
methods

Intermediate
representation

convert to Java
and compile

Model
class files

Optimize

Measuring speedup with a more complex HMM model on a 6 core
Intel machine with hyperthreading.

4.5 times speedup with 6 threads rising to 5.45 with hyper-
threading.

6 core Intel i7-9750H, Coffee Lake

Model
Instance

JVM

Callisto

Sandwood Runtime

Model
Instance

Sandwood
Compiler

Sandwood
Model

Description

Compiled
Files

Model
Instance

Application

ForkJoin

Project Aims
• Create a JVM based probabilistic programming language that will be

familiar to Java developers for inclusion in Java applications.

• Create a compiler and runtime for efficient encapsulated models allowing
them to be distinct components of a system.

• Construct a range of backend implementations for high performance and
scalability that can adjust to different runtime systems: Multi-CPU, Multi-
GPU, Java Vector API (JEP 338), ….

Example HHM Model

Sandwood Components

Class Structure

initialState

HMM <<Interface>>
HMM Core

HMM Core
Callisto

HMM Core
Fork Join

HMM Core
Single Thread

actions

m

bias

Entry point of user interactions and model
configuration

Model variable reading writing and
configuration

Model state and inference implementations. Hidden
from users.

Application Code

Compiler Pipeline Single Threaded Performance

Multi-Threaded Performance

Conclusions
• Sandwood is a fast scalable probabilistic programming

language for the JVM.

• Sandwood is designed to be familiar to Java developers to
prevent models becoming black boxes to the people
responsible for maintaining the system.

• Compiled models are structured in an intuitive Object-
Oriented style enabling a clean separation between the
model and the application.

• Common parts of models can be described in functions
that can be shared between models.

• Supports a subset of Javadoc allowing models to be self
documenting.

