
InferenceQL is a SQL-like language for querying probabilistic programs modeling tabular data. InferenceQL insulates users from implementation details of the
underlying model by treating probabilistic model programs as black boxes that satisfy a common API. Like probabilistic databases [1], InferenceQL aims to “[find]
valuable facts in imprecise data” [2], but whereas probabilistic databases “make uncertainty a first class citizen” [2], InferenceQL makes probabilistic models, given by
probabilistic programs, first class objects that can be directly queried in light of data.

Query Results

Why optimize InferenceQL?

Related work

Fast, exact marginalization and conditioning has recently been introduced for a broad class of probabilistic programs that can be compiled into sum-product expressions
[3]. We demonstrate that this work can be used to efficiently build and query probabilistic programs that model tabular data. The benefits are twofold: (i) using fast
inference leads to more practical workflows for iterative queries, and (ii) the exact inference algorithms have more predictable query runtime. We present preliminary
results on performance improvements in existing benchmarks for applying fast exact inference via sum-product expressions to generative population models.

Ulrich Schaechtle Zane Shelby Cameron Freer Feras Saad Vikash K. Mansinghka
MIT Probabilistic Computing Project

Accelerating inference for InferenceQL via sum-product expressions

Using an SPN model, [12] speeds up aggregation queries, e.g. estimating an
empirical expectation instead of computing the mean over a large table. For
approaches using weighted model counting, see [13]. Factorized databases [14]
use sums and products to avoid redundant computation in queries.

Extending capabilities of standard databases. Database systems and query
languages have been introduced to extend the standard relational algebra with
models and predictive modeling capabilities. To model database tables, these
systems either come precanned with models or they support specific model
classes. They extend relational algebra with functions that deal with imputation
[15], time series prediction [16], random data generation [17] and simulation [18].

BayesDB and generic APIs for querying probabilistic programs. InferenceQL
is most similar to BayesDB [19] in that it aims to provide a querying API to
generic probabilistic programs modeling tabular data. Like InferenceQL,
BayesDB requires all models to satisfy the CGPM API [20]. However,
InferenceQL introduces further restrictions on compositions to soundly support a
broad class of probabilistic programs. The CGPM API itself imposes tighter
restrictions than other interfaces for probabilistic programs (e.g. the generative
function interface in Gen [21] and the stochastic procedure in Venture [22]).

What is InferenceQL?

Probabilities

Query

Query Planner

Row 1

Row 2

...

Row N

SPPL
Inference
Engine

Probabilistic
 Programs

Data table

Compiler
Bayesian
Program
Synthesis

Query Engine

Program Synthesis Engine

Virtual Data

Sum Product Expressions Optimized
Sum Product Expression

Compose ⨁

Fig. 1. Overview of the platform implementing InferenceQL. The platform consists of a program synthesis engine as well as a query engine. The synthesis engine
takes a data table as input and returns an SPE expression. This SPE expression is read by the query engine. A query is then processed by a query planner that issues
multiple SPPL queries to the SPPL synthesis engine.

Fig. 4. Sum Product Expressions before and after constraining. Constraining a model
expressed as an SPE produces another SPE. The constraint re-weights clusters in the
networks and adds a sum-rooted subtree to each leaf node that models the constrained
variable (Perigee), to deal with the disjoint cases.

What is InferenceQL? Platform overview

Example: learning a probabilistic program for a database of Earth satellites Empirical results

BibliographyHow does exact inference work?

Fig. 2. Probabilistic program in JavaScript, modeling a data table of satellites with an automatically synthesized hierarchical mixture model. The model
class over which we are performing inference was introduced in [3]. In this case, a table of satellite data (a) is modeled by a generative program (b), implementing a
hierarchical mixture model, an instance of the model class over which we are performing inference. We highlight executions of the program corresponding to each of
three clusters (in blue, red, purple) in both the code and scatter-plots (c).

Fig. 3. Accelerated SPE inference is faster and more predictable than CrossCat
inference. (a) A parametric query controls the width of a numerical constraint on
Perigee_km. (b) The runtimes, expressed in terms of the size of the interval,
demonstrate that SPE inference runtime is nearly constant, while CrossCat inference has
high variance, especially for longer runtimes.

[1] Suciu, D., Olteanu, D., Koch, C., & Koch, C. (2011). Probabilistic Databases. Morgan & Claypool Publishers.
[2] Dalvi, N., Ré, C., & Suciu, D. (2009). Probabilistic databases: diamonds in the dirt. Communications of the ACM, 52(7), 86-94.
[3] Saad, F. A., Rinard, M. C., & Mansinghka, V. K. (2021). SPPL: probabilistic programming with fast exact symbolic inference. In Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation.
[4] Van den Broeck, G., Di Mauro, N., and Vergari, A. (2019) Tractable probabilistic models: Representations, algorithms, learning, and applications. Tutorial at the 35th Conference on
Uncertainty in Artificial Intelligence (UAI).
[5] Vergari, A., Choi, Y., Peharz, R., & Van den Broeck, G. (2020). Probabilistic circuits: Representations, inference, learning and applications. Tutorial at the 34th AAAI Conference on
Artificial Intelligence.
[6] Darwiche, A. (2003). A differential approach to inference in Bayesian networks. Journal of the ACM (JACM), 50(3), 280-305.
[7] Poon, H., & Domingos, P. (2011). Sum-product networks: A new deep architecture. In 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops) (pp.
689-690).
[8] Holtzen, S., Van den Broeck, G., & Millstein, T. (2020). Scaling exact inference for discrete probabilistic programs. Proceedings of the ACM on Programming Languages, 4(OOPSLA),
1-31.
[9] Kolb, S., Mladenov, M., Sanner, S., Belle, V., & Kersting, K. (2018, July). Efficient Symbolic Integration for Probabilistic Inference. In IJCAI (pp. 5031-5037).
[10] Correia, A. H., Peharz, R., & de Campos, C. (2020). Joints in Random Forests. arXiv preprint arXiv:2006.14937.
[11] Ceylan, I. I., Darwiche, A., & Van den Broeck, G. (2016). Open-world probabilistic databases. In Fifteenth International
Conference on the Principles of Knowledge Representation and Reasoning.
[12] Hilprecht, B., Schmidt, A., Kulessa, M., Molina, A., Kersting, K., & Binnig, C. (2020). DeepDB: Learn from Data, not from Queries! Proceedings of the VLDB Endowment, 13(7).
[13] Van den Broeck, G., & Suciu, D. (2015). Query processing on probabilistic data: A survey. Foundations and Trends® in Databases, 7(3-4).
[14] Olteanu, D., & Schleich, M. (2016). Factorized databases. ACM SIGMOD Record, 45(2), 5-16.
[15] Cambronero, J., Feser, J. K., Smith, M. J., & Madden, S. (2017). Query optimization for dynamic imputation. Proceedings of the VLDB Endowment, 10(11).
[16] Agarwal, A., Alomar, A., & Shah, D. (2021). tspDB: Time series predict DB. In NeurIPS 2020 Competition and Demonstration Track (pp. 27-56).
[17] Jampani, R., Xu, F., Wu, M., Perez, L. L., Jermaine, C., & Haas, P. J. (2008). MCDB: a Monte Carlo approach to managing uncertain data. In Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data.
[18] Farley, S., Brodsky, A., Egge, N., & McDowall, J. (2010). SimQL: Simulation-based decision modeling over stochastic databases. 15th IFIP WG8, 3.
[19] Mansinghka, V., Tibbetts, R., Baxter, J., Shafto, P., & Eaves, B. (2015). BayesDB: A probabilistic programming system for querying the probable implications of data. arXiv preprint
arXiv:1512.05006.
[20] Saad, F., & Mansinghka, V. K. (2016). A probabilistic programming approach to probabilistic data analysis. Advances in Neural Information Processing Systems, 29.
[21] Cusumano-Towner, M. F., Saad, F. A., Lew, A. K., & Mansinghka, V. K. (2019). Gen: a general-purpose probabilistic programming system with programmable inference. In
Proceedings of the 40th ACM SIGPLAN International Conference on Programming Language Design and Implementation.
[22] Mansinghka, V., Selsam, D., & Perov, Y. (2014). Venture: a higher-order probabilistic programming platform with programmable inference. arXiv preprint arXiv:1404.0099.

Probabilistic circuits [4, 5] are a general class of probabilistic models that aim to
balance expressiveness with tractable inference for querying. This class includes
arithmetic circuits [6], sum-product networks [7], and their generalization to
sum-product expressions [3] which are used by InferenceQL. Probabilistic
programming languages have made use of compilation to circuits [8], and some
approaches to probabilistic circuits have used symbolic inference [9]. Probabilistic
circuits have also been used to build probabilistic models induced by random
forests [10], a popular ML approach to modeling tabular data in databases.

Probabilistic databases assign weights to facts (grounded atoms of database
predicates) in the database [1]. Queries amount to computing the probability of a
Boolean formulas over those facts. The weight of a relation in a table needs to be
known ahead of time.

Open world probabilistic databases also assign weights to facts, and then create
a sum-product network for a given query [11]. In this approach, the probabilities
of unknown facts can be assigned any probability value from a default probability
interval.

Query plan optimization with via inference aims to speed up costly database
queries, e.g. by applying sum-product structure learning to joins in databases [12].

Table 1. InferenceQL inference runtimes are faster via SPE than via
CrossCat. This table shows run-time and variance for queries of the form
SELECT * FROM ([Generate Expression]) LIMIT 100. Queries
were run ten times in InferenceQL for each Generate Expression, with both
the SPPL-SPE and CrossCat backends. In every case, SPE was faster,
sometimes substantially so.

http://probcomp.csail.mit.edu/

