
InferenceQL is a SQL-like language for querying probabilistic programs modeling tabular data. InferenceQL insulates users from implementation details of the 
underlying model by treating probabilistic model programs as black boxes that satisfy a common API. Like probabilistic databases [1], InferenceQL aims to “[find] 
valuable facts in imprecise data” [2], but whereas probabilistic databases “make uncertainty a first class citizen” [2], InferenceQL makes probabilistic models, given by 
probabilistic programs, first class objects that can be directly queried in light of data.

Query Results

Why optimize InferenceQL?

Related work

Fast, exact marginalization and conditioning has recently been introduced for a broad class of probabilistic programs that can be compiled into sum-product expressions 
[3]. We demonstrate that this work can be used to efficiently build and query probabilistic programs that model tabular data. The benefits are twofold: (i) using fast 
inference leads to more practical workflows for iterative queries, and (ii) the exact inference algorithms have more predictable query runtime. We present preliminary 
results on performance improvements in existing benchmarks for applying fast exact inference via sum-product expressions to generative population models.
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Accelerating inference for InferenceQL via sum-product expressions

Using an SPN model, [12] speeds up aggregation queries, e.g. estimating an 
empirical expectation instead of computing the mean over a large table. For 
approaches using weighted model counting, see [13]. Factorized databases [14] 
use sums and products to avoid redundant computation in queries.

Extending capabilities of standard databases. Database systems and query 
languages have been introduced to extend the standard relational algebra with 
models  and predictive modeling capabilities. To model database tables, these 
systems either come precanned with models or they support specific model 
classes. They extend relational algebra with functions that  deal with imputation  
[15], time series prediction [16], random data generation [17] and simulation [18].

BayesDB and generic APIs for querying probabilistic programs.  InferenceQL 
is most similar to BayesDB [19] in that it aims to provide a querying API to 
generic probabilistic programs modeling tabular data. Like InferenceQL, 
BayesDB requires all models to satisfy the CGPM API [20]. However, 
InferenceQL introduces further restrictions on compositions to soundly support a 
broad class of probabilistic programs. The CGPM API itself imposes tighter 
restrictions than other interfaces for probabilistic programs (e.g. the generative 
function interface in Gen [21] and the stochastic procedure in Venture [22]). 
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Fig. 1. Overview of the platform implementing InferenceQL. The platform consists of a program synthesis engine as well as a query engine. The synthesis engine 
takes a data table as input and returns an SPE expression. This SPE expression is read by the query engine. A query is then processed by a query planner that issues 
multiple SPPL queries to the SPPL synthesis engine.

Fig. 4. Sum Product Expressions before and after constraining. Constraining a model 
expressed as an SPE produces another SPE. The constraint re-weights clusters in the 
networks and adds a sum-rooted subtree to each leaf node that models the constrained 
variable (Perigee), to deal with the disjoint cases.
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Fig. 2. Probabilistic program in JavaScript, modeling a data table of satellites with an automatically synthesized hierarchical mixture model. The model 
class over which we are performing inference was introduced in [3]. In this case, a table of satellite data (a) is modeled by a generative program (b), implementing a 
hierarchical mixture model, an instance of the model class over which we are performing inference. We highlight executions of the program corresponding to each of 
three clusters (in blue, red, purple) in both the code and scatter-plots (c).

Fig. 3. Accelerated SPE inference is faster and more predictable than CrossCat 
inference. (a) A parametric query controls the width of a numerical constraint on 
Perigee_km. (b) The runtimes, expressed in terms of the size of the interval, 
demonstrate that SPE inference runtime is nearly constant, while CrossCat inference has 
high variance, especially for longer runtimes.
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Probabilistic circuits [4, 5] are a general class of probabilistic models that aim to 
balance expressiveness with tractable inference for querying. This class includes 
arithmetic circuits [6], sum-product networks [7], and their generalization to 
sum-product expressions [3] which are used by InferenceQL. Probabilistic 
programming languages have made use of compilation to circuits [8], and some 
approaches to probabilistic circuits have used symbolic inference [9]. Probabilistic 
circuits have also been used to build probabilistic models induced by random 
forests [10], a popular ML approach to modeling tabular data in databases.

Probabilistic databases assign weights to facts (grounded atoms of database 
predicates) in the database [1]. Queries amount to computing the probability of a 
Boolean formulas over those facts. The weight of a relation in a table needs to be 
known ahead of time.

Open world probabilistic databases also assign weights to facts, and then create 
a sum-product network for a given query [11]. In this approach, the probabilities 
of unknown facts can be assigned any probability value from a default probability 
interval.

Query plan optimization with via inference aims to speed up costly database 
queries, e.g. by applying sum-product structure learning to joins in databases [12]. 

Table 1. InferenceQL inference runtimes are faster via SPE than via 
CrossCat. This table shows run-time and variance for queries of the form 
SELECT * FROM ([Generate Expression]) LIMIT 100. Queries 
were run ten times in InferenceQL for each Generate Expression, with both 
the SPPL-SPE and CrossCat backends. In every case, SPE was faster, 
sometimes substantially so. 
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