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Machine-assisted bond trading is a challenging problem that could potentially be solved more effectively via probabilistic programming (PP) than standard machine learning (ML) techniques.

e \We demonstrate a query for few-shot-learning-based search of bond trades implemented in a PP system. Our prototype uses an ML architecture combining domain-specilc feature engineering,
CrossCat modeling [1], few-shot learning queries [2] implemented via InferenceQL [3], and other query types (including CrossCat-based measures of bond similarity) implemented via BayesDB [3].

Additionally, we introduce a novel algorithm for active learning implemented in a PP system that can help traders find bonds that match their chosen strategy.

e Initial experimental results are provided with simulated data to show this algorithm has the potential to increase search efficiency compared with non-active alternatives.
References: [1] Mansinghka V. et al, JMLR, 2016. [2] Charcut, N, MIT Thesis, 2020. [3] Schaeclte U. et al, PROBPROG, 2020 [4] Saad, F. et al, AISTATS, 2017.
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Figure 1. Results from machine-assisted bond trading. (top) Interface to collect
labels from bond traders and execute probabilistic queries: a JavaScript
spreadsheet in the probabilistic programming system (PPS) InferenceQL. (middle)
A labeled bond trade from a set of trades labeled as interesting, showing
increased yield in the recent time period. (bottom) The top bond trade from a
search query to recommend trades based on a small number of provided labels.

function view_1() {
var cluster_id = sample_categorical ({"1": 0.00, "2": 0.00, "3": 0.08, /* And 24 others */});

f (cluster_id == "1") ({

1": sample_gaussian({"mu": 3.56, "sigma": 1.09}),

f": sample_gaussian({"mu": 0.85, "sigma": 0.69}),
"gspread diff": sample gaussian({"mu": 13.49, "sigma": 4.63}),

Some clusters omitted. */
} else if (cluster_ id == "27") {

irn {/* Samples */};

unction view_2() {
rar cluster_id = sample_categorical ({"1": 0.22, "2": 0.10, "3": 0.22, /* And 4 others */});

f (cluster_id == "1") ({
1 {
"rtg_moody o": sample_categorical ({"Aa3": 0.02, "Baal": 0.20, "Aaa": 0.02, * And 8 thers */}),
"gspread_o": sample_gaussian({"mu": 142.45, "sigma": 20.27}),
é ": sample_gaussian({"mu": 151.49, "sigma": 18.62}),
"rtg_fitch_o": sample_categorical ({"BBB": 0.07, "A-": 0.04, "BBB+": 0.05, * And 8 others */}),

ed. *

} else if (cluster_id =
1 {/* Samples */};

ion view_3() {

r cluster_id = sample_categorical ({"1": 1.00});
f (cluster_id == "1") ({
2turn {
"structure_n": sample_categorical ({"SENIOR": 0.96, "SRBN": 0.02, "SECURED": 0.02})
}:
}
}
function model () {

rar view_1 samples view_1();

var view_2 samples view _2();

I

var view_3_samples view_3();

return {...view_1 samples, ...view 2 samples, ...view_3 samples};

Figure 2. A probabilistic program learned from bond schedules. This JavaScript source code generates a set of
variables that characterize a bond at a moment in time. Repeated invocations generate a synthetic population
of bonds. This program was learned from real bonds data, as in [Saad et al. 2019], by (i) modeling the data
using CrossCat, a hierarchical Bayesian nonparametric model for multivariate data; (ii) truncating the CrossCat
model; and (iii) compiling to Javascript. Once such a model is available, query functionality is provided by both
Python and JavaScript.

Require: Ensemble probabilistic program G, Data table V'
Note that Gy is a sum of N separate Subprograms M}, with associated importance weights p) . If these were
generated by MCMC, the weights will all be equal.

Require: sparse label set )

1: (MV+Y pV+Y) = EMPTY-ENSEMBLE(N)

2: fori e {1.N} do

3 (MY p/™Y) = MCMC-UPDATE-MODEL-AND-WEIGHTS (M, pY , V)

4: end for
5. s = ZERO-VECTOR(V.rows)

6: for row r € V.rows do
7: Z[r) = r.data

8: Stemp = 0
9: Plavet = 0

10.  forlabell € {true,false} do

K2

> Incorporate ) into Subprogram ¢

> Initialize vector of predictive entropy by row

> Get the row data associated with r
> Accumulator for total weight across Subprograms
> Accumulator for label probability across Subprograms

> Iterate over possible labels

11: fori e {1.N} do
> Iterate over Subprograms in the updated Ensemble
12: pV+Y+¥ = EMPTY-VECTOR(N)
> Vector to hold expected posterior weights of Subprograms
13: Dlabel = Plabel + P} T~ CONDITIONAL-PROB({Y, = [}|V, M) )
> accumulate probability of label [
14: py tYHY = pV+Y+Y exp(LOGPDE(M) T, col: Y = 1, Tiie)
> Weight for Subprogram ¢ conditional on [
15: Stemp = Stemp — D] > ¥ log(p] V1)
> Accumulate unnormalized entropy including label
16: end for
17: Sy = Sy + Diabel (% + log(Zi p1V+y+y)
' > Normalize entropy and incorporate its expectation into s,.
18: end for
19: end for
20: return s

> List of expected posterior ensemble-level entropy for each row. Lower is better for labeling next.

Figure 3. (top) Active learning algorithm:
Pseudocode for using an ensemble of
probabilistic programs to rank rows with
missing data for a label column.

Figure 4. (right) Active learning
outperforms alternatives. Small gains in
accuracy, or (equivalently) small reductions
in the amount of expert labeling needed to
get a given level of accuracy, could make
big differences for companies using Active
Few Shot Learning to inform buy and sell
decisions.
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